Исследование операций: становление как науки

Активное использование достижений математики в различных областях, связанных с принятием управленческих решений, привело к становлению дисциплины, называемой «Исследования операций» (ИО). Формальные истоки ИО связывают с инициативой Алекса Питера Роу (Alex Piter Rowe), суперинтенданта Bawdsey Research Station, который использовал в 1937 г. знания британских ученых для повышения эффективности работы персонала новейшей радарной станции.

Затем исследование операций получило развитие. Для управления …

 

….

Другим стимулятором популяризации ИО был …

 

… было сформировано 26 групп. [3, c. 54-56]

А в начале 1950-х ИО стало активно применяться и в американской промышленности. Появление компьютера повысило осведомленность руководства о широте проблем и возможностях для их решения.

Потенциал вычислительной техники и информационных технологий как инструментов менеджмента подтолкнул интерес к ИО управленцев - гуманитариев. А развитие ИО в военных институтах привело к широкому использованию ИО в индустрии, правительстве и среднем бизнесе.

В России [2, c. 64-65] становление ИО как отдельной области знаний происходило с сильным отставанием. Это было вызвано и гонениями на кибернетику в целом, и общей технической отсталостью страны.

Формальное рождение ИО в России связывают с …

 

 

...

Рост популярности ИО в те годы связывается с именами Гермейера Ю. Б., Бусленко Н. П., Канторовича Л. В., Моисеева Н. Н., Репьева Ю. М. и многих других ученых и руководителей крупных проектов.

Таким образом, возрастающая сложность задач управления являлась причиной возникновения потребности в математических инструментах планирования и принятия решений и как следствие в использовании достижений ИО в области структуризации цикла принятия решений, количественных оценок альтернативных политик, планов и решений.

Сегодня ИО определяется либо как научный метод управления, либо как множество математических методов, либо как раздел математики. При этом ни одно из определений не принимается большинством специалистов-практиков, стоящих на страже интересов противоборствующих школ. Однако ясно, что ИО - это использование научного (как правило, математического) метода принятия решений. В данной курсовой работе будет рассмотрен один из методов принятия решений в ИО – многокритериальная оптимизация.

Многокритериальная оптимизация: сущность и постановка задачи

Задача многокритериального математического программирования имеет вид: [1, c. 41-43]

max{f1(x)=F1},
max{f2(x)=F2},
...
max{fk(x)=Fk}, при xєX, где

X – множество допустимых значений переменных х;

k – число целевых функций (критериев);

Fi – значение i-го критерия (целевой функции),

“max” – означает, что данный критерий нужно максимизировать.

Заметим, что по существу многокритериальная задача отличается от обычной задачи оптимизации только наличием нескольких целевых функций вместо одной.

При наличии в многокритериальной задаче критериев с разной размерностью с целью устранения данной проблемы используют нормализацию критериев. Способы нормализации представлены в таблице 1.1.

Таблица 1.1.

Способы нормализации

   
   
   
   
   
   
   
   

В данной таблице y – элемент пространства G. G – пространство элементов произвольной природы, называемых целевыми термами (в конкретных интерпретациях это совокупность, перечень или нумерация качественных свойств) элементов xєX.

Сверткой компонент многоцелевого показателя fєF называется отображение gє{F->R1}, которое преобразует совокупность компонент многоцелевого показателя f, соответствующих целевым термам yєY, в скалярный целевой показатель g(f(x|y)= g[{f(x|y}yєY]єR1. Основными видами сверток являются линейные, минимизационные, максимизационные, произведения и функции Кобба-Дугласа вида:

 

Проблемы получения и обоснования выбора сверток составляют основное направление теории полезности.

К настоящему времени сформулированы основные принципы выбора, приведенные в таблице 1.2. (приложение 1)

В задачах выбора решения, формализуемых в виде модели векторной оптимизации, первым естественным шагом следует считать выделение области компромиссов (или решений, оптимальных по Парето).

Вектор называется оптимальным по Парето решением, если не существует хєХ такого, что выполнены неравенства

Областью компромиссов Гх называется подмножество допустимого множества решений Х, обладающего тем свойством, что все принадлежащие ему решения не могут быть улучшены одновременно по всем локальным критериям — компонентам вектора эффективности. Следовательно, для любых двух решений, принадлежащих области Гх(х', x''єГх), обязательно имеет место противоречие хотя бы с одним из локальных критериев. Это автоматически приводит к необходимости проводить выбор решения в Гх на основе некоторой схемы компромисса, что и послужило причиной для названия этого подмножества областью компромиссов.

Оптимальное решение, выбираемое на основе многокритериального подхода независимо от …

 

… областью компромиссов Гх, которая, как правило, значительно уже всей области возможных решений Х. Рассмотрим теперь некоторые методы многокритериальной оптимизации.






Глава 2. Некоторые методы многокритериальной оптимизации


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: