double arrow

Механизмы транспорта веществ через клеточную мембрану нейрона

Структурно-функциональная характеристика клеточной мембраны

Клеточная мембрана (оболочка клетки) представляет собой тонкую (6 нм) липопротеиновую пластинку, содержание липидов в которой составляет около 40%, белков— около 60%. Изнутри клеточная мембрана выстлана тонким, более плотным слоем гиалоплазмы, практически лишенной органелл. На внешней поверхности мембраны имеется небольшое количество (5 — 10%) углеводов, молекулы которых соединены либо с белками (гликопротеи-ды), либо с липидами (гликолипиды) и образуют гликокаликс. Углеводы участвуют в процессах рецепции биологически активных веществ, реакциях иммунитета. Структурную основу клеточной мембраны (матрикс) составляет бимолекулярный слой фосфолипидов, являющихся барьером для заряженных частиц и молекул водорастворимых веществ. Липиды обеспечивают высокое электрическое сопротивление мембраны нейрона — до 1000 Ом/см2.

Молекулы фосфолипидов мембраны состоят из двух частей: одна из них несет заряд и гидрофильна, другая — не заряжена и гидрофобна. Это определяет способность липидов самопроизвольно образовывать двухслойные мембранные структуры под влиянием собственных зарядов. В клеточной мембране заряженные гидрофильные участки молекул фосфолипидов от одних молекул направлены внутрь клетки, а от других — наружу. В толще клеточной мембраны молекулы фосфолипидов взаимодействуют незаряженными гидрофобными участками (они «спрятаны» от внутриклеточной и внеклеточной воды). В липидном слое клеточных мембран содержится много холестерина. Обмен липидов в отличие от белков происходит медленнее. Однако возбуждение нейронов мозга приводит к уменьшению содержания в них липидов. В частности, после длительной умственной работы, при утомлении количество фосфолипидов в нейронах уменьшается (очевидно, это связано с более яркой памятью у лиц, занимающихся напряженным умственным трудом). Состав мембранных липидов определяется средой обитания и характером питания. Так, увеличение растительных жиров в рационе ведет к возрастанию текучести клеточных мембран и улучшает их функции. Избыток холестерина в мембранах увеличивает их микровязкость, ухудшает транспортные функции клеточной мембраны. Недостаток жирных кислот и холестерина в пище нарушает липидный состав и функции клеточных мембран.

Молекулы белков встроены в фосфолипидный матрикс клеточной мембраны, где встречаются тысячи различных белков, которые можно объединить в основные классы: структурные белки, переносчики, ферменты, белки, образующие каналы, ионные насосы, специфические рецепторы. Один и тот же белок может быть рецептором, ферментом и насосом.

Каналы образованы белковыми молекулами, встроенными в липидный матрикс, они пронизывают мембрану. Через эти каналы могут проходить полярные молекулы. Многие мембранные белки, так же как и фосфолипиды, состоят из двух частей: заряженной и незаряженной. Незаряженные участки белков погружены в липидный слой, не несущий заряда. Заряженные участки белков взаимодействуют с заряженными участками липидов, что является важным фактором, определяющим взаиморасположение структурных элементов клеточной мембраны и ее прочность. Большинство белков, пронизывающих липидный слой, прочно связаны с фосфолипидами (интегральные белки), главной функцией которых является транспорт веществ через клеточную мембрану. Большая часть интегральных белков — гликопротеиды. Белки, прикрепленные к поверхности клеточной мембраны (в основном к внутренней ее части), называют периферическими, они, как правило, являются ферментами (ацетилхолинестераза, фосфатазы, аденилатциклаза, протеинкиназы). Некоторые интегральные белки также выполняют функцию ферментов, например АТФаза. Рецепторами и антигенами мембраны могут быть как интегральные, так и периферические белки. Белки, примыкающие к мембране с внутренней стороны, являются также составной частью цитоскелета, который обеспечивает дополнительную прочность клеточной мембране и ее эластичность.

Обновление белков мембраны происходит очень быстро — в течение 2 — 5 дней (срок их жизни).

Клеточная мембрана нейрона, как и большинства клеток организма, имеет отрицательный поверхностный заряд, который обеспечивается выступающей из мембраны клетки углеводной частью гликолипидов, фосфолипидов, гликопротеидов. Мембрана обладает текучестью, т.е. ее отдельные части могут перемещаться из одного участка на другой.

Клеточные мембраны обладают избирательной проницаемостью — одни вещества пропускают, другие не пропускают; в частности, мембрана легко проницаема для жирорастворимых веществ, проникающих через липидный слой; большинство мембран пропускают воду. Анионы органических кислот не проходят через мембрану, но имеются каналы, избирательно пропускающие ионы К+, Na+, Ca2+, СГ. При действии нервных импульсов проницаемость мембраны нейрона для различных ионов изменяется, это обеспечивает движение ионов согласно концентрационному и электрическому градиентам, что выражается в возникновении возбуждающих и тормозных потенциалов.

 

Механизмы транспорта веществ через клеточную мембрану нейрона

Транспорт частиц через клеточную мембрану нейрона обеспечивает: 1) поступление в клетку различных веществ, необходимых для синтеза клеточных структур и выработки энергии; 2) выделение клетками продуктов ее обмена и биологически активных веществ — нейрогормонов, нейромедиаторов; 3) создание электрических зарядов клеток, возникновение и распространение возбуждения.

Транспорт веществ через клеточную мембрану необоснованно делят на пассивный (без затрат энергии) и активный (с затратой энергии). Считают, что движущей силой пассивного перемещения веществ является концентрационный (химический) и электрический градиенты. Согласно концентрационному градиенту частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Согласно электрическому градиенту положительно заряженные частицы стремятся перейти в область с отрицательным электрическим зарядом, отрицательно заряженные частицы — в противоположном направлении. При этом направления электрического и концентрационного градиентов могут совпадать и не совпадать.

Следует, однако, заметить, что термин «пассивный транспорт» не соответствует реальной действительности, так как электрический и концентрационный градиенты в живой клетке создаются активно, т.е. с затратой энергии.

Только обмен веществ между организмом и внешней средой может проходить частично без затрат энергии, если имеется концентрационный градиент — это диффузия газов из легких в кровь или выход их из крови, всасывание питательных веществ в кровь из желудочно-кишечного тракта, если их концентрация в кишечнике больше, чем в крови. Поэтому термин «пассивный транспорт» необходимо исключить, так как подобного механизма в животном организме вообще не существует: все виды транспорта веществ в организме осуществляются активно, с затратой энергии. Но в одних случаях энергия затрачивается непосредственно на транспорт какой-то частицы, например иона Na+, с помощью белковой молекулы, называемой насосом. Это первично активный механизм, в данном случае создается концентрационный (химический) градиент — потенциальный запас энергии. В других случаях энергия на перенос частиц затрачивается опосредованно, например перенос молекул глюкозы с помощью натрия, т.е. это вторично-активный механизм, энергия расходуется только на перенос натрия. Считают, что движение воды согласно закону осмоса осуществляется пассивно, без затрат энергии: вода движется в область с высокой концентрацией частиц (с высокой осмолярностью). Однако при одинаковом осмотическом давлении по обе стороны мембраны одностороннее движение воды прекращается. Движение воды, в результате которого была израсходована потенциальная энергия в виде концентрационного градиента, нельзя назвать пассивным, без затрат энергии, это вторично-активный транспорт.

Самостоятельно в организме могут передвигаться лишь некоторые клетки, например лейкоциты, тучные клетки. В частности, амебоидная подвижность нейтрофилов обусловлена образованием двигательных псевдоподий, при этом энергия расходуется на деятельность сократительного аппарата — акто-миозиновых структур. Однако все частицы, в том числе и ионы, не могут перемещаться сами вообще, у них нет собственного механизма передвижения (транспортного средства). Транспортируемые частицы являются пассивным элементом во всех случаях без исключения, их движение обеспечивает какой-то механизм, находящийся вне их (внешняя относительно частицы сила), например концентрационный градиент, ионная помпа, передвигающая ион. Таким образом, расход энергии в организме на транспорт веществ в одних случаях осуществляется непосредственно, в других — опосредованно.

Если энергия расходуется непосредственно на перенос частиц, транспорт следует называть первично-активным. При расходовании Ранее запасенной энергии на транспорт частиц, например концентрационного градиента, такой транспорт называют вторично-активным. Поскольку транспорт веществ в обоих случаях является активным (с затратой энергии), целесообразно использовать термины первичный и вторичный транспорт веществ.

Первичный транспорт

Первичный транспорт — это такой транспорт, при котором энергия расходуется непосредственно на перенос частиц. Он включает, во-первых, перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, во-вторых, эндоцитоз, экзоцитоз и трансцитоз (перенос через клетку, который для нейрона не характерен).

Транспорт веществ с помощью насосов (помп). Насосы представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии являются АТФ. Обычно указывают на существование трех ионных насосов: натрий-калиевого, кальциевого и водородного (Na/K-, Ca-, и Н-насосы). Есть основание предполагать наличие и хлорного С1-насоса, о чем свидетельствуют определенные факты. Насосы локализуются на клеточных мембранах или мембранах органелл клеток.

Вторичный транспорт

Вторичный транспорт — это переход различных частиц и молекул воды за счет ранее запасенной (потенциальной) энергии. Потенциальная энергия создается в виде электрического и концентрационного градиентов, гидростатического давления, что обеспечивает транспорт веществ через клеточную мембрану нейронов и кровеносных сосудов. К вторичному транспорту относятся следующие виды.

Диффузия. Согласно законам диффузии частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными зарядами — притягиваются друг к другу. Направление диффузии определяется взаимодействием электрического и концентрационного (химического) градиентов. Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Скорость диффузии определяется проницаемостью клеточной мембраны, а также градиентом концентрации для незаряженных частиц; электрическим и концентрационным градиентами для заряженных частиц. Направления действия электрического и концентрационного градиентов могут не совпадать. Например, Na+ в процессе возникновения возбуждения продолжает поступать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечивается концентрационным градиентом вопреки электрическому градиенту. Совокупность химического (концентрационного) и электрического градиентов называют электрохимическим градиентом. Различают следующие виды диффузии.

Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. При этом заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — согласно химическому градиенту.

Через липидный бислой проходят жирорастворимые частицы. Если они находятся в воде по одну сторону мембраны, то могут внедряться в липидную оболочку благодаря тепловому движению (при этом необходимо освободиться от гидратной оболочки). Частицы-неэлектролиты обычно легко освобождаются от гидратной оболочки (разрыв водородных связей). Естественно, с уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. Примером простой диффузии через липидный слой может служить диффузия малых незаряженных полярных молекул: алкоголя, кислорода, углекислого газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарств. Этот процесс происходит слишком медленно и плохо контролируется.

Входе эволюции сформировались специальные каналы, по которым могут проходить различные частицы, причем ионы очень быстро (за 10~7— 1(Г8 с). Каналы заполнены водой и кроме ионов через них могут проходить малые молекулы неэлектролитов (этанол, мочевина), заряженные молекулы. Диаметр этих каналов 0,3 — 0,8 нм. Скорость диффузии определяется электрохимическим градиентом и проницаемостью клеточной мембраны для данного вещества. С течением времени скорость простой диффузии изменяется мало, пока существует движущая сила (электрический или концентрационный градиенты), так как по одному и тому же каналу или через липидный бислой после прохождения одной частицы сразу же может следовать другая.

Облегченная диффузия осуществляется также согласно концентрационному градиенту, но обеспечивает перенос веществ, способных образовывать комплексы с молекулами-переносчиками. Переносчик должен свободно переходить с одной стороны мембраны на другую. Этот транспорт осуществляется очень быстро, поскольку переносчик облегчает переход транспортируемого вещества через мембрану. Движущей силой является градиент транспортируемого вещества. С помощью простой диффузии через мембрану не могут проходить даже такие небольшие полярные молекулы, как моносахариды, аминокислоты.

Облегченная диффузия имеет ряд особенностей по сравнению с простой диффузией: а) наличие специфических переносчиков для отдельных или нескольких веществ, близких по строению; вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за переносчик; б) у молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа; в) с увеличением концентрации вещества с одной стороны мемб- > раны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии.

Прекращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все переносчики уже заняты (явление насыщения). Имеются специфическое стимулирование и ингибирование облегченной диффузии: например, флоридзин, введенный в просвет кишечника, специфически подавляет транспорт Сахаров, не затрагивая переноса аминокислот; инсулин активирует перенос глюкозы, аминокислот в клетки организма. Переносчиками являются белковые молекулы мембраны, которые совершают челночные движения с одной стороны мембраны на другую либо встраиваются в мембрану. В последнем случае образуется канал, по которому проходят транспортируемые вещества, в основном сахара, аминокислоты.

В случае предполагаемых челночных движений белковых молекул-переносчиков возникает вопрос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движение, то оно быстро прекратится после уравнивания концентрации самих переносчиков по обе стороны клеточной мембраны. На этот вопрос ответа пока нет. По-видимому, возможны два механизма. Во-первых, за счет создания градиента концентрации самого переносчика, с помощью концентрационного градиента транспортируемого вещества. Если, например, концентрация глюкозы или аминокислоты больше вне клетки, нежели в клетке, то они могут переходить в клетку согласно своему градиенту концентрации. Образование комплекса молекул глюкоза-переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентрационному градиенту глюкозы. Движущей силой является концентрационный градиент глюкозы. На другой стороне мембраны комплекс распадается, поэтому концентрация молекул-переносчиков возрастает, и они в соответствии со своим концентрационным градиентом переходят с внутренней на внешнюю сторону мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Во-вторых, челночные движения переносчика могут осуществляться с помощью ионов К+. Известно, что К+ постоянно диффундирует из клетки согласно концентрационному градиенту. При этом на внутренней стороне клеточной мембраны может образоваться комплекс ион К+ — молекула переносчика, который и перейдет на внешнюю сторону мембраны. В этом случае движущей силой является концентрационный градиент К+, который затем переносится в клетку Na/K-помпой с непосредственной затратой энергии, т. е. первично-активно. Напомним, что энергия здесь затрачивается только на транспорт Na+, т.е. транспорт веществ экономичен. Переносчик же транспортируется вторично-активно, если не будет работать Na/K-помпа, челночные движения переносчика согласно такому представлению прекратятся.

Осмос — это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление — это диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Измеряется минимальной величиной гидростатического Давления, препятствующего движению растворителя через полупроницаемую мембрану. Осмотическое давление одномолярного Раствора чрезвычайно велико: 22,4 атм, в плазме крови оно существенно ниже — 7,6 атм, несколько больше внутри клетки, что и обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Осмос продолжается до выравнивания осмотического давления по обе стороны полупроницаемой мембраны или выравнивания осмотического давления и гидростатического противодавления. Поэтому при подавлении метаболизма клетки быстро набухают, так как внутри клетки осмотическое давление сохраняется повышенным: внутрь клеток поступает вода и они становятся более упругими. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Натриевый механизм: энергия затрачивается на создание градиента натрия, здесь различают два варианта данного механизма транспорта.

При первом варианте направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт). Глюкоза соединяется с белком-переносчиком, который соединяется с Na+, a Na+ согласно концентрационному и электрическому градиентам, диффундирует в клетку и несет с собой глюкозу. В клетке комплекс распадается, Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту (первично-активно). С помощью натриевого механизма обеспечивается обратный захват (реабсорбция) медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью Na+ осуществляется согласно законам диффузии. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент Na+. Глюкоза вместе с Na+ идет в клетку даже в случае ее большей концентрации в клетке, нежели в среде, если, конечно, электрохимический градиент Na+ превосходит концентрационный градиент глюкозы.

При втором варианте натриевого механизма перемещение транспортируемых частиц направлено в противоположную сторону движения Na+ (антипорт, т.е. противотранспорт). С помощью этого обменного механизма регулируется, например, содержание Са2+ в клетке, рН внутри клетки за счет выведения Н-иона в обмен на внеклеточный Na+. Внутриклеточная концентрация Са2+ на несколько порядков ниже внеклеточной. Натриевый концентрационный градиент участвует в выведении Са2+ из клетки. Об этом свидетельствует, в частности, следующий факт. Выведение Са2+ из клетки снижается, если удалить из внеклеточной среды Na+. Это позволяет предположить, что Са2+ выводится из клетки в обмен на поступающий в нее Na+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается он переносчиком-обменником. Исходным источником энергии этого процесса опять является градиент Na+, который в конечном счете формируется за счет АТФ-зависимого активного транспорта Na+. Поэтому при ингибировании Na/K-АТФазы, при уменьшении внеклеточной концентрации Na+ и в бескалиевой среде (когда Na+ выводится недостаточно из клетки) Na/Ca-об-менник блокируется, в результате чего увеличивается внутриклеточная концентрация Са2+.

Однако конкретный механизм работы переносчика-обменника неясен. Переносчик может транспортировать Са2+ и Н+ вопреки их электрическим и концентрационным градиентам только в том случае, если сам переносчик имеет собственный градиент: его концентрация на внешней стороне мембраны клетки больше, чем на внутренней. Причем этот градиент должен постоянно поддерживаться, иначе перенос Са2+ и Н+ прекратится. По-видимому, выведение Са2+ и Н+ из клетки в результате диффузии Na+ в клетку (антипорт—противотранспорт) осуществляется следующим образом. Na+ постоянно диффундирует в клетку согласно своему электрохимическому градиенту и транспортирует с собой (в комплексе) молекулы-переносчики, что и ведет к созданию концентрационных градиентов молекул-переносчиков, направленных из клетки. Са2+ и Н+на внутренней стороне мембраны клетки соединяются со своими переносчиками и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Na/K-насоса ведет к накоплению Са2+ в клетках (транспорт Са2+ из клетки уменьшается). Это примеры вторичного транспорта вещества за счет первичного транспорта Na+, который с помощью помпы выводится из клетки. Переносчики же совершают челночные движения за счет работы Na/K-насоса (вторично-активно) и транспортируют с собой Са2+ и Н+.

Транспорт веществ из кровеносных сосудов в интерстиций ЦНСосуществляется с помощью диффузии, осмоса и фильтрации, т.е. перехода раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью сердца (фильтрация в артериальном конце капилляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкой мускулатурой желудочно-кишечного тракта и мышечного пресса, обеспечивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь.

Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Что касается вторичного транспорта ионов, то он осуществляется, как правило, с помощью простой диффузии через специальные ионные каналы.

 

Ионные каналы

Ионные каналы образованы белками, они весьма разнообразны по устройству и механизму действия.

Классификация ионных каналов проводится по нескольким признакам.

1. По возможности управления их функцией различают управляемые и неуправляемые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам, которые могут быть быстрыми и медленными. Потенциал действия в нейроне возникает в основном вследствие активации быстрых Na- и К-каналов. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы могут проходить только при открытых воротах.

2. В зависимости от стимула, активирующего или инактивирующего управляемые ионные каналы, основными каналами нейронов ЦНС являются потенциалчувствительные и хемочувствитель-ные каналы. При взаимодействии медиатора (лиганда) с рецепторами хемочувствительного канала, расположенного на поверхности клеточной мембраны, может происходить открытие его ворот, поэтому хемочувствительный канал называют также рецеп-торуправляемым каналом. Лиганд — это биологически активное вещество или фармакологический препарат, активирующий или блокирующий рецептор. Открытие ворот хемочувствительных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие электрический заряд.

3. В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. В нейронах имеются Na-, K-, Са- и С1-селективные каналы. Есть каналы, пропускающие несколько ионов, например Na+, K+ и Са2+, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциалчувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов постсинаптических мембран, через каналы которых могут одновременно проходить ионы Na+ и К+.

4. Для одного и того же иона может существовать несколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К+. Калиевые неуправляемые каналы покоя (каналы утечки), через которые постоянно выходит К+ из клетки, что является главным фактором в формировании мембранного потенциала (потенциала покоя). Потенциалчувствительные управляемые ^-каналы сравнительно медленно активируются при возбуждении клетки в фазу деполяризации с последующим увеличением активации, что обеспечивает быстрый выход К+ из клетки и реполяризацию ее (генерация потенциала действия).

Каналы для Na+ — медленные (утечки) и быстрые: 1) быстрые а-каналы потенциалчувствительны, быстро активирующиеся при уменьшении мембранного потенциала, что обеспечивает вход Na+ в клетку во время ее возбуждения (восходящая часть потенциала действия). Затем эти каналы быстро инактивируются; 2) медленные неуправляемые Na-каналы — каналы утечки, через которые Na+ постоянно диффундирует в клетку и переносит с собой другие молекулы, например глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Na-каналы утечки обеспечивают вторичный транспорт веществ и участие Na+ в формировании мембранного потенциала.

Устройство ионных каналов и их функционирование. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм, каналы заполнены жидкостью, их размеры 0,3 — 0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диаметр иона Na+, например, с гидратной оболочкой равен 0,3 нм, а без гидратной оболочки — 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеивания» не дает ответ, например, на вопрос: почему К+ не проходит через открытые Na-каналы в начале цикла возбуждения клетки? Но тем не менее она дает удовлетворительное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (селективной) проницаемости клеточных мембран для разных частиц и ионов.

Особенности функционирования различных видов управляемых каналов. Во-первых, они отличаются по степени селективности. Наиболее высока степень селективности потенциалчувствительных (потенциалзависимых) каналов. Во-вторых, у каналов разных видов может наблюдаться или отсутствовать взаимодействие между собой. Так, частичная деполяризация клеточной мембраны за счет активации хемочувствительных каналов может привести к активации потенциалчувствительных каналов, например для ионов, что обеспечивает возбуждение нейрона. Активация же потенциалчувствительных каналов не влияет на функцию хемочувствительных каналов нейронов.

Ионные каналы блокируются специфическими веществами и фармакологическими препаратами. Новокаин, например, как местный анестетик, снимает болевые ощущения, потому что он, блокируя Na-каналы, прекращает проведение возбуждения по нервным волокнам.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: