Задание 2. Взаимосвязь различных форм моделей динамических систем

 

2.1 Постановка задачи

Объект описан дифференциальным уравнением:

Требуется:

1. Записать модель объекта в пространстве состояний.

2. Записать модель объекта в форме передаточной функции.

3. Получить частотные характеристики объекта.

2.2 Математическая постановка задачи

Рассмотрим систему автоматического управления (САУ), описываемую линейным (линеаризованным) дифференциальным уравнением вида:

 

 (2.1)

 

где u(t) – входной процесс, y(t) – выходной процесс, ai, bj – постоянные коэффициенты, n, m (n>m)– постоянные числа. В операторной форме выражение (2.1) может быть записано .

Здесь D – оператор дифференцирования . Отсюда преобразование “вход-выход” системы:

где W(D) называется операторной передаточной функции.

Один из способов моделирования систем заключается в представлении преобразования “вход-выход” в виде комплексной передаточной функции:

которая получается путем применения преобразования Лапласа к (2.2) ри начальных нулевых условиях. Здесь s-комплексная переменная. Связь между операторной (2.2) и комплексной (2.3) передаточными функциями можно записать в виде:

Комплексные числа, являющиеся корнями многочленаВ(s), называются нулями передаточной функции, а корни многочлена A(s) – полюсами.

Явный вид связи входа и выхода определяется выражением:

где w(t) – оригинал (т.е. полученный с помощью обратного преобразования Лапласа) комплексной передаточной функции W(s).

Динамические свойства систем характеризуют реакции на входные воздействия специального вида. В частности анализ выхода системы на единичный скачок и d-функцию (дельта-функцию).

Пусть u(t) = 1(t), то есть на вход системы подается функция Хевисайда (единичный скачок), определяемая:

График функции Хевисайда приведен на рис. 2.1а:

 

а)

б)

Рис.2.1. Функции Хевисайда (а) и Дирака (б)

 

Реакция САУ на единичный скачек называется переходной функцией системы и обозначается h(t).

Если u(t) = d(t), то есть на вход системы поступает функция Дирака (d-функция, импульсная функция, рис. 2.1б) определяемая:

то реакция САУ называется импульсной переходной функцией системы и обозначается w(t). Таким образом оригинал комплексной передаточной функции можно измерить как реакцию систему на импульс.

Импульсная и переходная функции системы связаны соотношением:

Благодаря широкому применению при исследовании устойчивости динамических систем и проектировании регуляторов получили распространение частотные характеристики.

Пусть на вход системы с передаточной функцией W(s) подается гармонический сигнал u(t) = aucos(wt), t>0. В этих условиях справедлива следующая теорема:

Если звено является устойчивым, то установившаяся реакция y(t) на гармоническое воздействие является функцией той же частоты с амплитудой ay = au |W(iw)| и относительным сдвигом по фазе y = argW(iw).

Таким образом, выход определяется гармонической функцией

 

y(t) = au |W(iw)| cos(w t + argW(iw)),(2.9)

 

где i – комплексная единица, – частотная характеристика.

При фиксированном значении w частотная характеристика является комплексным числом, и, следовательно, может быть представлена в виде:

где – амплитудно-частотная характеристика (АЧХ); – фазово-частотная характеристика (ФЧХ); – вещественная частотная характеристика (ВЧХ); – мнимая частотная характеристика (МЧХ).

Геометрическое место точек W(iw) на комплексной плоскости при изменении w от w0 до от w1 (обычно w0 = 0, w1 = ), называется амплитудно-фазовой характеристикой (АФХ) или частотным годографом Найквиста.

Имеет широкое практическое значение диаграмма Боде (логарифмическая амплитудная характеристика, ЛАХ), которая определяется как L = 20 lg A(w), измеряется в децибелах и строится как функция от lg w.

2.3 Результаты выполнения задания

 

Выполняем анализ с помощью пакета прикладных программ MatLab

Передаточная функция имеет вид:

 

 

Полюса передаточной функции:

-13.8796

-0.5602 + 1.4614i

-0.5602 - 1.4614i

Нули передаточной функции:

-35.7482

-0.2518

При помощи команды step(w) строим переходную функцию h(t) рис2.2

 

Рис.2.2. Переходная функция h(t)


 

При помощи команды impulse(w) строитьсяимпульсная переходная функция w(t) рис2.3:

 

Рис. 2.3. Импульсная переходная функцияw(t)

 

При помощи команды bode(w) строим Диаграмму Боде рис 2.4:

 

Рис.2.4. Диаграмма Боде

 

АФХ системы он жегодограф НайквистаW(iw), строится при помощи команды nyquist(w):


 

Рис. 2.5. Годограф Найквиста

 

Текст расчетов в MatLab

 

>> w= TF([1,36,9],[1,15,18,34])

Transfer function:

s^2 + 36 s + 9

------------------------

s^3 + 15 s^2 + 18 s + 34

>>pole(w)

ans =

-13.8796

-0.5602 + 1.4614i

-0.5602 - 1.4614i

>>zero(w)

ans =

-35.7482

-0.2518

>>step(w)

>>impulse(w)

>>bode(w)

>>nyquist(w)

>>ltiview(w)

Рисунок 2.6 – Блок-схема программы исследования характеристик динамической системы




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: