.
.
Приведенные моменты второй группы звеньев являются функциями положения механизма и, как видно из формулы, не зависят от абсолютных значений скоростей точек механизма. Результаты расчетов сведены в таблицу 6. Выбрав масштаб построения, по данным таблицы 6 строим график
.

График
может быть приближенно принят за график кинетической энергии второй группы звеньев
, т.к.
, а закон изменения
еще не определен, поэтому принимаем
, что возможно, т.к. величина коэффициента неравномерности вращения
- величина малая, и тогда величину
можно считать пропорциональной
, построенную кривую
принять за приближенную кривую
.
Масштаб графика
определяется по формуле
.
Результаты расчета сведены в таблицу 6.
Таблица 5.
Значения движущего момента
| 0 | 11 | 1 | 2 | 21 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 91 | 10 | 11 | ||
, м
| 0 | 0.016 | 0.029 | 0.046 | 0.048 | 0.047 | 0.035 | 0.018 | 0 | -0.018 | -0.035 | -0.047 | -0.048 | -0.046 | -0.029 | |
, м
| 0 | 0.016 | -0.029 | -0.046 | -0.048 | -0.047 | -0.035 | -0.018 | 0 | 0.018 | 0.035 | 0.047 | 0.048 | 0.046 | 0.029 | |
, мм
| 55.8 | 98 | 69.75 | 30.38 | 20.28 | 14.88 | 9.31 | 4.98 | 2.94 | -2.17 | -1.96 | -1.96 | -1.96 | -1.96 | -1.96 | |
, Н
| 2936 | 5157 | 3671 | 1598 | 1067 | 783 | 490 | 262.1 | 154.7 | -114.2 | -103.1 | -103.1 | -103.1 | -103.1 | -103.1 | |
, Нм
| 0 | 82.512 | 106.4 | 73.5 | 51.21 | 36.8 | 17.15 | 4.71 | 0 | -2.05 | -3.60 | -4.84 | -4.94 | -4.74 | -2.98 | |
, Нм
| 0 | 0 | -2.98 | -4.74 | -4.94 | -4.84 | -3.60 | -1.85 | 0 | 1.85 | 1.84 | -8.53 | -17.25 | -28.46 | -49.41 | |
, Нм
| 0 | 82.512 | 103.42 | 68.76 | 46.27 | 31.96 | 13.55 | 2.86 | 0 | -0.2 | -1.76 | -13.37 | -22.19 | -33.2 | -52.39 |
| 12 | 121 | 13 | 14 | 141 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 211 | 22 | 23 | ||
, м
| 0 | 0.016 | 0.029 | 0.046 | 0.048 | 0.047 | 0.035 | 0.018 | 0 | -0.018 | -0.035 | -0.047 | -0.048 | -0.046 | -0.029 | |
, м
| 0 | 0.016 | -0.029 | -0.046 | -0.048 | -0.047 | -0.035 | -0.018 | 0 | 0.018 | 0.035 | 0.047 | 0.048 | 0.046 | 0.029 | |
, мм
| -1.96 | 0 | -1.96 | -1.96 | -1.96 | -1.96 | -1.96 | -1.96 | -1.96 | 1.96 | 1 | -3.45 | -6.83 | -11.76 | -32.38 | |
, Н
| -103.1 | 0 | -103.1 | -103.1 | -103.1 | -103.1 | -103.1 | -103.1 | -103.1 | 103.1 | 52.63 | -181.5 | -359.4 | -618.9 | -1704 | |
, Нм
| 0 | 0 | -2.98 | -4.74 | -4.94 | -4.84 | -3.60 | -1.85 | 0 | 1.85 | 1.84 | -8.53 | -17.25 | -28.46 | -49.41 | |
, Нм
| 0 | 82.512 | 106.4 | 73.5 | 51.21 | 36.8 | 17.15 | 4.71 | 0 | -2.05 | -3.60 | -4.84 | -4.94 | -4.74 | -2.98 | |
, Нм
| 0 | 82.512 | 103.42 | 68.76 | 46.27 | 31.96 | 13.55 | 2.86 | 0 | -0.2 | -1.76 | -13.37 | -22.19 | -33.2 | -52.39 |
Таблица 6
Значения приведенных моментов инерции и кинетической энергии второй группы звеньев.
| 0 | 1 | 2 | 21 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 91 | 10 | 11 | 12 | |
| 3891 | 5202 | 7695 | 8394 | 8394 | 6703 | 4655 | 3891 | 4655 | 6703 | 8394 | 8394 | 7695 | 5202 | 3891 |
| 1822 | 1440 | 490 | 122 | 0 | 490 | 1440 | 1822 | 1440 | 490 | 0 | 122 | 490 | 1440 | 1822 |
| 0 | 3364 | 8464 | 9216 | 8836 | 4900 | 1296 | 0 | 1296 | 4900 | 8836 | 9216 | 8464 | 3364 | 0 |
| 5713 | 10006 | 16649 | 17732 | 17230 | 12093 | 7391 | 5713 | 7391 | 12093 | 17230 | 17732 | 16649 | 10006 | 5713 |
| 11426 | 20012 | 33298 | 35464 | 34460 | 24186 | 14782 | 11426 | 14782 | 24186 | 34460 | 35464 | 33298 | 20012 | 11426 |
| 114.26 | 200.12 | 332.98 | 354.64 | 344.60 | 241.86 | 147.82 | 114.26 | 147.82 | 241.86 | 344.60 | 354.64 | 332.98 | 200.12 | 114.26 |
| 9.77 | 17.1 | 28.48 | 30.33 | 29.47 | 20.69 | 12.64 | 9.77 | 12.64 | 20.69 | 29.47 | 30.33 | 28.48 | 17.1 | 9.77 |
| 114.26 | 200.12 | 332.98 | 354.64 | 344.60 | 241.86 | 147.82 | 114.26 | 147.82 | 241.86 | 344.60 | 354.64 | 332.98 | 200.12 | 114.26 |
| 13 | 14 | 141 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 211 | 22 | 23 | 24 | |
| 5202 | 7695 | 8394 | 8394 | 6703 | 4655 | 3891 | 4655 | 6703 | 8394 | 8394 | 7695 | 5202 | 3891 |
| 1440 | 490 | 122 | 0 | 490 | 1440 | 1822 | 1440 | 490 | 0 | 122 | 490 | 1440 | 1822 |
| 3364 | 8464 | 9216 | 8836 | 4900 | 1296 | 0 | 1296 | 4900 | 8836 | 9216 | 8464 | 3364 | 0 |
| 10006 | 16649 | 17732 | 17230 | 12093 | 7391 | 5713 | 7391 | 12093 | 17230 | 17732 | 16649 | 10006 | 5713 |
| 20012 | 33298 | 35464 | 34460 | 24186 | 14782 | 11426 | 14782 | 24186 | 34460 | 35464 | 33298 | 20012 | 11426 |
| 200.12 | 332.98 | 354.64 | 344.60 | 241.86 | 147.82 | 114.26 | 147.82 | 241.86 | 344.60 | 354.64 | 332.98 | 200.12 | 114.26 |
| 17.1 | 28.48 | 30.33 | 29.47 | 20.69 | 12.64 | 9.77 | 12.64 | 20.69 | 29.47 | 30.33 | 28.48 | 17.1 | 9.77 |
| 200.12 | 332.98 | 354.64 | 344.60 | 241.86 | 147.82 | 114.26 | 147.82 | 241.86 | 344.60 | 354.64 | 332.98 | 200.12 | 114.26 |
3.8. Построение приближенного графика 
Известно, что
. С другой стороны,
, т.е. кинетическая энергия механизма отличается от суммарной работы на некоторую постоянную величину
. Поэтому ранее построенный график работы
можно принять за график
относительно оси
, отстоящей от оси
на величину
.
Следовательно, для построения графика
, необходимо из кривой
в каждом положении механизма вычесть отрезки изображающие
, взятые из таблицы 6, но в масштабе
. Полученная кривая
приближенная, так как получена из точных значений
вычитанием приближенных значений
.
Расчет маховика
Т.к.
, видно, что амплитуда колебаний угловой скорости
в течение цикла будет тем меньше, чем больше численное значение
для каждого данного значения
.
Увеличение
для всего цикла возможно путем добавления постоянного слагаемого
, т.е. установлением на входном валу дополнительных масс с постоянным моментом инерции
. Эти дополнительные массы называют маховиком и конструктивно выполняются в виде колеса с тяжелым ободом, либо в виде диска.
, м
, м
, мм
, Н
, Нм
, Нм
, Нм
, м
, м
, Н






