Комплексные числа и действия над ними

 

       Система действительных чисел является неполной, так как не содержит корни некоторых многочленов, например . Если  квадратичное уравнение  имеет отрицательный дискриминант, то есть , то на действительной оси нет ни одного корня. Однако существует система условных, обобщённых чисел, где и такие уравнения тоже имеют решения. Они называются комплексными числами и геометрически соответствуют точкам на плоскости, а известная ранее действительная ось - это горизонтальная ось Ох в данной плоскости. Введено абстрактное понятие «мнимая единица»  обозначающая «квадратный корень из минус 1». При этом получается .

Геометрическая интерпретация. На плоскости, горизонтальная ось отождествляется со множеством действительных чисел, а мнимая ось, содержащая , перпендикулярна оси действительных чисел.

 

.

Комплексные числа - ещё более абстрактное обобщение. Оно полезно при решении различных физических задач. Плоскость комплексных чисел есть расширение множества действительных чисел. Каждой точке на плоскости с координатами  можно поставить в соответствие комплексное число, состоящее из действительной и мнимой части: . Проекция на действительную и мнимую ось называются действительной частью и мнимой частью комплексного числа. , .

Если , то число  это обычное действительное число.

Сложение и вычитание комплексных чисел определяется покоординатно, как для обычных векторов в плоскости.

 = .

Для вычитания аналогично:  = .

Умножение.

 = , учитывая тот факт, что ,

получаем  = .

Таким образом, после раскрытия скобок, надо просто учесть  и привести подобные.

Пример.  =  = .

 

Определение. число  называется сопряжённым к .

       Умножим два взаимно сопряжённых комплексных числа:

 =  = , получилось действительное число. Мы заметили, что при умножении на сопряжённое мнимая часть станет 0. Этот факт можно использовать для процедуры деления. Если домножить на сопряжённое в знаменателе, то там получится действительное число, и это даст возможность разбить на сумму двух дробей. При этом, конечно, в числителе тоже домножаем на сопряжённое к знаменателю, чтобы дробь не изменилась.

= = =

Пример. Вычислить .

Решение. =  =  =  =  =

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: