Вычисление объема тела по известным площадям его параллельных сечений

Рис. 11.
Пусть имеется тело объема V. Площадь любого поперечного сечения тела S известна как непрерывная функция S = S(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [ a, b ] (см. рис. 11). Так как на каком- либо промежуточном отрезке разбиения [ xi-1, xi ] функция S(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.
Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi, при этом Dxi = xi - xi-1.
Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно
и
.
При стремлении к нулю шага разбиения l, эти суммы имеют общий предел:

Таким образом, объем тела может быть найден по формуле:

Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию S(x), что весьма проблематично для сложных тел.
Пример. Найти объем шара радиуса R.

Рис. 12.
В поперечных сечениях шара получаются окружности переменного радиуса
. В зависимости от текущей координаты
этот радиус выражается по формуле
(см. рис.12).
Тогда функция площадей сечений имеет вид: S(x) =
.
Получаем объем шара:
.
Объем тел вращения
Рассмотрим кривую, заданную уравнением
. Предположим, что функция
непрерывна на отрезке
. Если соответствующую ей криволинейную трапецию с основанием
вращать вокруг оси Ох, то получим так называемое тело вращения.

Рис. 13.
Так как каждое сечение тела плоскостью
представляет собой круг радиуса
, то объем тела вращения может быть найден по полученной выше формуле:







