Гармоническое колебание тока i(t) показано на рис. 6.1. Оно характеризуется следующими основными параметрами: амплитудой Iт; угловой частотой
, начальной фазой
. Функция i(t) носит название мгновенное значениетока.Амплитудой 1т называют максимальное абсолютное значение тока i(t).
Рис. 6.1
Аналитически гармоническое колебание можно записать в виде:
i(t) =
(6.1)
где
— текущая фаза(или просто фаза) гармонического колебания. Угловая частота
= 
Гармоническое колебание можно выразить и в синусоидальной форме:
i(t) =
, (6.2)
где
.
Наименьший промежуток времени, через который значения гармонической функции i(t) повторяются, называется периодом Т. Период Т и угловая частота
связаны соотношением
T =
. (6.3)
Величина, обратная периоду, называется циклической частотой: f = 1/Т. Угловая и циклическая частоты связаны между собою:
= 2
f.
Единицей измерения циклической частоты f является герц (Гц), угловой частоты
— радиан в секунду (рад/с). Так как радиан — величина безразмерная, то ω измеряется в 1/с или
.
Важными параметрами гармонических колебаний являются их действующее и среднее значения. Действующее значениегармонического тока
(6.4)
Здесь i = i(t) — мгновенное значение гармонического тока.
Подставив значение i из (6.1) в (6.4), после интегрирования получим
. (6.5)
Аналогично определяются мгновенное и действующее значения напряжения и ЭДС:

Действующие значения токов и напряжений (ЭДС) называют еще их среднеквадратическими значениями.
Среднее значениегармонического тока
. (6.6)
Подставив значение i(t) из (3.1) в (3.6), получим, что
= 0, соответственно
и
.
Рассмотрим гармонические колебания в резистивных, индуктивных и емкостных элементах.






