Наиболее широкое распространение получило представление гармонических колебаний с помощью комплексных чисел. Представим ток
, определяемый формулой (6.1), на комплексной плоскости, т.е. изобразим на комплексной плоскости вектор I m с учетом начальной фазы
(рис.7.1). Чтобы отобразить изменение текущей фазы, будем вращать этот вектор в положительном направлении (против часовой стрелки) с угловой частотой
. Тогда в любой момент времени положение вращающегося вектора определится комплексной величиной (комплексным гармоническим колебанием):
(7.1)
отражает проекцию вращающегося вектора на вещественную ось, а
— на мнимую ось.

Рис. 7.1.
Таким образом, гармонический ток
может быть представлен в виде проекции вращающегося вектора на вещественную ось комплексной плоскости:
, (7.2)
где Re — сокращенное обозначение слова Realis (действительный, вещественный),
Im — сокращенное обозначение слова Imaginarins (мнимый). Величина
носит название комплекснойамплитуды тока:
(7.3)
Важным свойством комплексной амплитуды является то, что она полностью определяет гармоническое колебание заданной частоты
, так как содержит информацию об его амплитуде и начальной фазе.
Комплексное действующее значение тока: 
Для каждого комплексного числа возможны три формы представления: алгебраическая, тригонометрическая, показательная формы.
С учетом приведенных в лекции 6 соотношений между токами и напряжениями на элементах электрической цепи (6.8, 6.10, 6.12) комплексные сопротивления элементов цепи имеют вид:
(7.4)
Множитель
характеризует фазовый сдвиг между векторами тока
и напряжения
.
В электрических цепях находят применение магнитно-связанные катушки индуктивности. На схемах они изображаются, как показано на рис. 7.2, где М – взаимная индуктивность. Знак э.д.с. взаимной индукции в индуктивностях L 1 и L 2 зависит от направления включения катушек индуктивности, что показано на рис. 7.2 жирными точками. Если катушки включены так, что ток в них протекает одинаково относительно зажимов, то они включены “согласно” (рис. 7.2.а). Если ток протекает в разных относительно зажимов направлениях, то катушки включены “встречно”(рис. 7.2.б).

Рис. 7.2
При символическом методе расчетов комплексное сопротивление магнитно-связанных катушек (на примере индуктивности L 1) определяется для согласного включения рис. 7.2.а, как
, а при встречном включении рис. 7.2.б, как
.
При составлении символической схемы (схемы в комплексной области) необходимо заменить элементы исходной схемы (схемы во временной области) их комплексными эквивалентными сопротивлениями. При этом в полученной символической схеме можно указывать (рассматривать) только комплексные значения токов и напряжений и производить их расчет методом комплексных амплитуд.

Рис. 7.3
На рис. 7.3 для примера показан переход от электрической схемы к символической, где элементы символической схемы определяются формулами (7.4)
Символический методрасчета цепей в режиме гармонических колебаний (метод комплексных амплитуд) сводит операции над гармоническими колебаниями (временными функциями) к алгебраическим операциям над комплексными числами, что существенно упрощает расчет. Операции дифференцирования временных функций заменяются в комплексной области умножением на
, операции интегрирования — делением на
. В результате перехода к комплексным числам вместо системы интегрально-дифференциальных уравнений, описывающих состояние цепи, получается система алгебраических уравнений с комплексными коэффициентами, решение которой определяет комплексные значения искомых токов и напряжений.
При расчете цепей символическим методом могут быть использованы все законы и методы преобразований и анализа цепей, которые справедливы для цепей постоянного тока. Для комплексных действующих значений токов и напряжений получим:
(7.5)
где 
Заменив мгновенные значения токов ветвей
и напряжений
их комплексными амплитудами
и
соответственно, получим законы Кирхгофа в комплексной форме:
(7.6)
Поскольку все методы расчета цепей (метод контурных токов, узловых потенциалов, наложения и др.) базируются на законах Ома и Кирхгофа, то все эти методы могут использоваться и при комплексной форме записи с заменой соответствующих величин (токов, напряжений, сопротивлений, проводимостей) их комплексными значениями. Например, для схемы рис. 7.3. получаем U = I ∙ (ZR + Z L+ Z C).
Лекция 8






