Определение байесовских решений с
Если в результате проведения единичного эксперимента произошел конкретный исход , то, по-видимому, для этого исхода и следует решать задачу по выбору решения. Это можно проделать, посчитав апостериорные вероятности состояния природы z при исходе y: .
При этом известно, что Z — множество состояний природы, X — возможные решения. Такая задача отличается от задачи без эксперимента тем, что вместо апостериорных вероятностей природы используются априорные вероятности, то есть .
Используя аналогию этой задачи можно определить средние значения потерь статистика:
.
Байесовский принцип выбора стратегий сводится к тому, чтобы выбрать такое , при котором .
Рассмотрим байесовский принцип на примере двуальтернативной задачи:
Двуальтернативная задача
Пусть .
Будем считать, что при правильном выборе решения , потери статистика отсутствуют (или равны 0).
Тогда ошибка первого рода дает потери 1, а ошибка второго рода дает потери .
Данная задача описывается матрицей потерь:
z | ||
w | ||
Рассмотрим решающую функцию x=d(y), которая делит пространство Y — множество исходов эксперимента на 2 подмножества: S и C(S): , где C(S) — дополнение S до Y.
Если , то принимается решение ;
Если , то принимается решение .
Так как множества S и C(S) должна быть компактными, необходимо найти границу этого подмножества. Обозначим через — элементы, принадлежащие этой границе. Очевидно, что если множество исходов эксперимента можно описать в виде прямой, то — это точка на этой прямой. На плоскости — это линия.
Для нахождения уравнения, определяющего границу , рассмотрим выражение для средних потерь. Учитывая данные, приведенные в таблице, потери будут определяться:
.
В общем случае потери
.
Граница соответствует одинаковым потерям при решении и . Для рассматриваемой задачи уравнение, определяющее границу, определяется как:
.
Отношение правдоподобия в этом случае:
.
Из этого условия следует, что каждому значению q будет соответствовать своя граница и соответственно области S и C(S). Аналогично вероятности ошибочных решений и будут определяться априорной вероятностью q. — вероятность ошибки первого рода; - вероятность ошибки второго рода. Эти вероятности показывают вероятность того, что при , а при
Тогда более развернуто:
Для определения характера зависимости вероятностей ошибочных решений от q, сначала оцениваются крайние значения q=0 и q=1. Если , то принимается решение , которое предполагает, что потери . Выражая эти потери, можно получить, что
Предположим, что q=0. Это предполагает, что отношение .
Это может быть только в том случае, если: , C(S)=Y. Если посчитать значения коэффициентов =1, С(S)=Y.
В другом крайнем состоянии q=1, получаем:
. Это может быть, когда .
Это условие определяет, что множество исходов эксперимента Y=S, C(S)=Таким образом, вероятности ошибок при изменении .
Определим средние потери при любом значении как байесовские риски:
Если рассмотреть график зависимости , то он будет иметь вид вогнутой кривой:
На практике встречаются случаи, когда значение q неизвестно, а известна его оценка . Возникает вопрос: «Как поступить?».
При приближенной оценке получим :
Если — грубая оценка, то потери могут стать больше максимальных потерь при , то есть
При значимом отличие q от , потери невыгодны и в этом случае удобнее исходить из наиболее неблагоприятного . Ориентированные на потери можно рассматривать как минимаксные потери, стратегию как минимаксную стратегию. Применение байесовских принципов оправдано, когда q хорошая оценка , а при плохих оценках используется минимаксный принцип выбора стратегий.