Примеры решения метрических задач

Классификация метрических задач (определение углов и расстояний)

МЕТРИЧЕСКИЕ ЗАДАЧИ

Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа.

Поскольку алгоритмы всех разновидностей метрических задач приведены в рабочих тетрадях, то ограничимся их простым перечислением:

  Определение расстояний: 1) Между точками. 2) От точки до прямой линии. 3) Между параллельными прямыми. 4) От точки до плоскости. 5) От прямой до плоскости. 6) Между плоскостями. 7) Между скрещивающимися прямыми.   Определение углов: 1) Между пересекающимися прямыми. 2) Между скрещивающимися прямыми. 3) Между прямой и плоскостью. 4) Между плоскостями.


Простейшие метрические задачи приводились при изучении отдельных предыдущих разделов курса. Теперь рассмотрим несколько относительно сложных задач с применением и почти без применения способов преобразования комплексного чертежа.

Пример1 (Рис.69) Определить расстояние от точки до отрезка без преобразования чертежа (кроме заключительной части задачи).

По ходу решения задачи необходимо выполнить три вещи: задать необходимый перпендикуляр, пересечь его с отрезком и определить его натуральную величину этого перпендикуляра.

Задать перпендикуляр – значит найти его точку пересечения с отрезком. С отрезком общего положения. В этом случае перпендикуляр не окажется линией уровня. Поэтому теорема о трех перпендикулярах здесь не поможет. Обратимся к другому пути решения.

Из точки можно проводить бесконечное множество прямых, перпендикулярных к отрезку . Но только один из них имеет шансы пересечь отрезок в некоторой точке . Построить точку можно как результат пересечения отрезка с плоскостью , содержащей в себе упомянутые перпендикуляры.

Остается определить длину перпендикуляра любым способом преобразования чертежа или способом прямоугольного треугольника в данной задаче используем способ вращения вокруг проецирующей прямой.

Рис.69

Решение:

1) :

2) : , – посредник.

3) – перпендикуляр.

4) – ответ.

Пример 2 (Рис.70). Решить предыдущую задачу способом замены плоскостей проекций. Дополнительно спроецировать перпендикуляр на исходные плоскости проекций: и .

Чтобы определить длину перпендикуляра , необходимо спроецировать его в натуральную величину. А это станет возможным, если отрезок преобразовать в проецирующую прямую и использовать его вырожденную в точку проекцию. Для решения задачи потребуется две замены плоскостей проекций.

Рис.70

Решение:

1-я замена:

1.

2. и ,

AB(A1B1, A4B4) – линия уровня.

2-я замена:

3. (П5 П4) AB Х45 A4B4,

4. A5 = B5 и M5,

AB(A4B4, A5=B5) – проецирующая

прямая.

5. |M5, (A5=B5)|=|M,AB| - ответ.

Дополнительно: при обратном проецировании перпендикуляра на плоскости и учесть, что в системе плоскость перпендикуляр – линия уровня.

Пример 3 (Рис.71). Определить угол наклона отрезка к плоскости способом замены плоскостей проекций.

На чертеже угол между прямой и плоскостью определяется углом между вырожденной проекцией плоскости и натуральной величиной отрезка на прямой. Для получения вырожденной проекции плоскости требуется две замены плоскостей проекций. При второй замене необходимо учитывать, что отрезок в последней системе плоскостей проекций должен оказаться линией уровня.

Решение:

1-я замена:

1.

2. и ,

– плоскость уровня.

Рис.71

2-я замена:

3. ,

4. и ,

– проецирующая прямая,

– прямая уровня.

5. .

6. Обводка с учётом видимости.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: