В стационарном режиме теплопроводности температурное поле не изменяется во времени, т.е. . В этом случае дифференциальное уравнение теплопроводности для тел простейшей формы при допущении независимости физических свойств тела от температуры принимает вид
или в дивергентной форме ,
где x1 – координата, м; k – коэффициент формы тела. Подставляя в последнее уравнение значения коэффициента формы тела и обозначение координаты для тел простейшей формы, получим
а) бесконечная пластина или плоская стенка (k = 1, x1 = x)
;
б) бесконечный цилиндр (k = 2, x1 = r)
или в дивергентной форме ;
в) шар или сфера (k = 3, x1 = r) или в дивергентной форме .
Плоская стенка
Решим дифференциальное уравнение теплопроводности для плоской стенки при следующих условиях однозначности:
— толщина стенки равна δ, м;
— коэффициент теплопроводности стенки не зависит от температуры и равен λ Вт/(м·К);
— внутренние источники (стоки) теплоты в стенке отсутствуют, т.е. ;
— на обеих поверхностях плоской стенки задано значение температуры (ГУ I рода)
.
Рис.2.4. Стационарное температурное поле в плоской стенке
Решение дифференциального уравнения для бесконечной пластины выполним двойным интегрированием:
откуда следует .
И окончательно получаем общее решение температурного поля в виде
,
из анализа, которого следует, что в плоской стенке при стационарном режиме теплопроводности температура линейно изменяется по ее толщине (см. рис.2.4.).
Постоянные интегрирования находим, используя граничные условия путем решения системы из двух линейных уравнений
.
Из первого уравнения следует, что , а из второго уравнения системы находим постоянную
.
Подставляя значение постоянных интегрирования в общее решение, окончательно получаем
.
Зная температурное поле, несложно рассчитать плотность теплового потока в плоской стенке, воспользовавшись законом Фурье
или ,
где – тепловая проводимость плоской стенки, Вт/(м2×К); – термическое сопротивление теплопроводности плоской стенки, (м2×К)/Вт.
Из анализа формулы для расчета плотности теплового потока следует, что тепловой поток не изменяется по толщине плоской стенки или в любой точке плоской стенки. Поэтому для любого i-го слоя многослойной стенки можно записать
,
где – перепад температур на i-ом слое многослойной стенки;– термическое сопротивление теплопроводности i-го слоя многослойной стенки.
Из последнего выражения следует, что перепад температур на каждом слое многослойной стенки прямо пропорционален термическому сопротивлению этого слоя
Плотность теплового потока для плоской стенки, состоящей из n слоев, рассчитывается по формуле:
.
Решим дифференциальное уравнение теплопроводности для цилиндрической стенки при следующих условиях однозначности:
— внутренний и наружный радиусы цилиндрической стенки равны r1 и r2,м;
— коэффициент теплопроводности стенки не зависит от температуры и равен λ Вт/(м·К);
— внутренние источники (стоки) теплоты в стенке отсутствуют, т.е. ;
— на обеих поверхностях цилиндрической стенки задано значение температуры (ГУ I рода)
.
Решение дифференциального уравнения для бесконечного цилиндра выполним двойным интегрированием. Для этого воспользуемся записью дифференциального уравнения теплопроводности в дивергентной форме
, т.к.
Разделяя переменные и интегрируя второй раз, получим общее решение температурного поля
,
из анализа, которого следует, что в цилиндрической стенке при стационарном режиме теплопроводности изменение температуры по ее толщине подчиняется логарифмическому закону (см. рис. 2.5.).
Постоянные интегрирования находим, используя граничные условия путем решения системы из двух линейных уравнений
.
Предоставляя читателю самостоятельно решить вышеуказанную систему алгебраических уравнений, приведем формулу изменения температурного поля в цилиндрической стенке
Рис.2.5. Стационарное температурное поле в цилиндрической стенке
Тепловой поток, проходящий через цилиндрическую стенку длиной , рассчитаем по закону Фурье
.
Из анализа последней формулы следует, что тепловой поток не изменяется по толщине цилиндрической стенки . В расчетах теплопроводности через цилиндрическую стенку используют тепловой поток, отнесенный к длине цилиндрической стенки – линейную плотность теплового потока
,(м×К)/Вт,
где – линейное термическое сопротивление теплопроводности цилиндрической стенки.
В общем случае для любого слоя i – го многослойной цилиндрической стенки можем записать
,
откуда следует, что