Энергетические зоны. При конденсации газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у атомов данного типа

Обменное взаимодействие

При конденсации газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у атомов данного типа энергетические уровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие воздействия соседних атомов друг на друга. В частности, притяжение электронов одного атома ядром соседнего снижает высоту потенциального барьера, разделяющего электроны в уединенных атомах. Главное состоит в том, что при сближении атомов происходит перекрытие электронных оболочек, а это в свою очередь существенно изменяет характер движения электронов. Благодаря перекрытию оболочек электроны могут без изменения энергии посредством обмена переходить от одного атома к другому, т.е. перемешаться по кристаллу. Обменное взаимодействие имеет чисто квантовую природу и является следствием неразличимости электронов. В этом случае уже нельзя говорить о принадлежности того или иного электрона определенному атому - каждый валентный электрон принадлежит всем атомам кристаллической решетки одновременно. Иными словами, при перекрытии электронных оболочек происходит обобществление электронов.

Вследствие обменного взаимодействия дискретные энергетические уровни изолированного атома расщепляются в энергетические зоны, как показано для неметаллического твердого тела рис. 2.11б. Разрешенные энергетические зоны разделены запрещенными интервалами энергии. Ширина разрешенных энергетических зон не зависит от размеров кристалла, а определяется лишь природой атомов, образующих твердое тело, и симметрией кристаллической решетки.

Обозначим через Эа энергию обменного взаимодействия между двумя соседними атомами. Тогда для кристаллов с простой кубической решеткой, где каждый атом имеет 6 ближайших соседей, расщепление уровней в зоны составит 12 Эа; для гранецентрированной решетки (первая координационная сфера состоит из 12 атомов) ширина энергетической разрешенной зоны составит 24 Эа, а в объемноцентрированной (у каждого атома 8 соседей) - 16 Эа.

Поскольку обменная энергия Эа зависит от степени перекрытия электронных оболочек, то уровни энергии внутренних оболочек, которые сильнее локализованы вблизи ядра, расщепляются меньше, чем уровни валентных электронов. Расщеплению в зону подвержены не только нормальные (стационарные), но и возбужденные энергетические уровни.

Ширина разрешенных зон при перемещении вверх по энергетической шкале возрастает, а величина запрещенных энергетических зазоров соответственно уменьшается.

Каждая зона состоит из множества энергетических уровней. Очевидно, их количество определяется числом атомов, составляющих твердое тело. А это значит, что в кристалле конечных размеров расстояние между уровнями обратно пропорционально числу атомов. В кристалле объемом в 1 см3 содержится 1022-1023 атомов. Экспериментальные данные показывают, что энергетическая протяженность зоны валентных электронов не превышает единиц электронвольт. Отсюда можно сделать вывод, что уровни в зоне отстают друг от друга по энергии на 10-22-10-23 эВ, т.е. энергетическая зона характеризуется квазинепрерывным спектром. Достаточно ничтожно малого энергетического воздействия, чтобы вызвать переход электронов с одного уровня на другой, если там имеются свободные состояния.

Приведенные рассуждения основаны на квантово-механической модели энергетических зон, рассмотренных выше, рассматривающей электрон, входящий в состав атома какого-либо вещества, как некоторую заряженную частицу, свойства которой можно определить, решив уравнение Шредингера.

Основную роль в процессе объединения атомов в кристалл играют электроны. В квантовой механике движение электронов описывается волновой функцией, обладающей в изолированном атоме водорода сферической симметрией, так что заряд электрона как бы диффузно распределён, образуя размытое облако.

В зависимости от того, как расположены энергетические зоны (рис.15.2), твердые тела принято делить

  • диэлектрики
  • полупроводники
  • металлы

Согласно зонной теории, электроны валентной зоны имеют практически одинаковую свободу движения во всех твердых телах независимо от того, являются ли они металлами или диэлектриками. Для объяснения различий в электрических свойствах материалов надо принять во внимание различную реакцию на внешнее электрическое поле электронов заполненной и незаполненной зон. Внешнее электрическое поле стремится нарушить симметрию в распределении электронов по скоростям, ускоряя электроны, движущиеся в направлении действующих электрических сил, и замедляя частицы с противоположно направленным импульсом. Однако подобное ускорение и замедление связано с изменением энергии электронов, что должно сопровождаться переходом их в новые квантовые состояния.

Рис. 15.2.

Очевидно, что такие переходы могут осуществляться лишь в том случае, если в энергетической зоне имеются свободные уровни.

В металлах, где зона не полностью укомплектована электронами, даже слабое поле способно сообщить электронам достаточный импульс, чтобы вызвать их переход на близлежащие свободные уровни. По этой причине металлы хорошие проводники электрического тока.

В полупроводниках и диэлектриках при температуре 00К все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Электроны полностью заполненной зоны не могут принимать участия в создании электрического тока.

Для появления электропроводности необходимо часть электронов перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно для осуществления этого перехода, требуется более сильное энергетическое воздействие, например, нагревание твердого тела.

Чем выше температура и меньше запрещенная зона, тем выше интенсивность межзонных переходов.

У диэлектриков запрещенная зона может быть настолько велика, что электронная электропроводность не играет определяющей роли.

Выводы

1. Твердое тело является металлом, т.е. проводником, в том случае, если валентные электроны одновременно принадлежат всем атомам

2. Твердое тело, в котором валентные электроны прочно связаны со своими атомами, является диэлектриком.

a. Если каждый атом имеет, например, 4 валентных электрона, являющихся общими для 4 ближайших атомов (конфигурация валентных связей), то такое твердое тело является полупроводником


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: