Динамика интегрирующего звена описывается дифференциальным уравнением
.
2. Импульсная переходная характеристика (или функция веса) имеет вид:
3. Передаточная функция идеального интегрирующего звена:
4. АФХ звена:
на комплексной плоскости изображается в виде прямой, совпадающей с мнимой осью.
5. АЧХ:
представляет собой гиперболу, которая при стремится к бесконечности. При увеличении частоты значения А(w) стремятся к нулю. Это свойство сближает интегрирующие звенья с инерционными.
6. ФЧХ идеального интегрирующего звена:
показывает, что сдвиг фаз, создаваемый звеном, на всех частотах одинаков и равен
-900.
7. ЛАЧХ:
представляет собой прямую с наклоном –20дБ/декаду, проходящую через точку с координатами w =1, L(w) =20lg k.
Пример:
Идеальным интегрирующим звеном можно считать (с некоторыми допущениями) гидравлический исполнительный механизм, для которого входной и выходной величиной является количество жидкости Q (м3/с), поступающей в единицу времени в полость цилиндра, а выходной величиной – перемещение l (м) поршня со штоком. Действительно, если масса перемещающихся частей пренебрежимо мала и усилие, создаваемое давлением гидронасоса, существенно больше сил сопротивления, то перемещение поршня определяется уравнением баланса жидкости вида
,
где S – площадь поверхности жидкости (м2), а коэффициент k – выражением
.
Идеальных интегрирующих звеньев в реальных объектах практически не существует.