Упрощенный способ вычисления
Вычисление числовых характеристик выборки
Таблица 6
| | | | | | |
| | |||||
| | |||||
| | |||||
| | | | |
- середины интервалов;
- частоты;
- объем выборки;
с помощью суммы
находим
;
с помощью суммы
находим
и
;
с помощью суммы
находим
;
с помощью суммы
находим
.
При больших значениях вариантов и соответствующих им частот вычисление выборочного среднего, дисперсии и выборочных моментов по приведенным ниже формулам приводит к громоздким вычислениям.
В этом случае используют условные варианты
, определяемые по формулам:
, где числа
и
выбираются произвольно.
Чтобы упростить вычисления в качестве
выбирают вариант, который имеет наибольшую частоту или находится в середине ряда. Число
называется «ложным нулем». В качестве
выбирают число равное длине интервала (в случае интервального ряда) или наибольший общий делитель разностей
.
Для вычисления числовых характеристик выборки составляем табл. 7.
Таблица 7.
| | | | | | |
| | |||||
| | |||||
| | |||||
| | | | | |
Контроль:

С помощью сумм, полученных в нижней строке таблицы, находим условные моменты:
,
,
,
.
Числовые характеристики выборки вычисляем по формулам:
;
;
;
;
,
где
и
находим по формулам:
,
.
Пример 5. Вычислить числовые характеристики выборки, рассмотренной в примере 4 (табл.4), для которой построен интервальный ряд (табл.5).
¦ В качестве вариантов
возьмем середины интервалов. Перейдем к условным вариантам.
Вариант, значение которого
, имеет наибольшую частоту и находится в середине ряда. Примем его за «ложный ноль» (начало отсчета).
Условные варианты найдем по формуле:
,
где 
, 
.
Составим расчетную табл.8 по форме табл.7
Таблица 8
| | | | | | | |
| -1,76 | -3 | -6 | -54 | ||||
| -1,16 | -2 | -12 | -48 | ||||
| -0,56 | -1 | -11 | -11 | ||||
| 0,04 | |||||||
| 0,64 | |||||||
| 1,24 | |||||||
| 1,84 | |||||||
| -6 | -24 |
Контроль: 
. Расчеты проведены верно.
По данным табл. 8 находим условные моменты:
,
,
,
.
Находим числовые характеристики выборки:



Вычислим центральные моменты третьего и четвертого порядка:




Вычислим выборочные коэффициенты асимметрии и эксцесса:
.?