Статистические методы выявления наличия корреляционной связи между двумя признаками

При изучении конкретных зависимостей одни признаки выступают в качестве факторов, обусловливающих изменение других признаков. Признаки этой первой группы в дальнейшем будем называть признаками-факторами (факторными признаками); а признаки, которые являются результатом влияния этих факторов, будем называть результативными. Например, при изучении зависимости между производительностью труда рабочих и энерговооруженностью их труда уровень производительности труда является результативным признаком, а энерговооруженность труда рабочих – факторным признаком.

Рассматривая зависимости между признаками, необходимо выделить, прежде всего, две категории зависимости: 1) функциональные и 2) корреляционные.

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. При наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака.

В корреляционных связях между изменением факторного и результативного признака нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Таким образом, при наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости однозначно функциональной связи корреляционные связи характеризуются, множеством причин и следствий и устанавливаются лишь их тенденции.

Ограничения корреляционного анализа

1. Для того чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа. Например, должны быть отобраны предприятия, выпускающие однотипную продукцию, имеющие одинаковый характер технологического процесса.

2. При выполнении указанных общих требований далее необходима количественная оценка однородности исследуемой совокупности по комплексу признаков. Одним из возможных вариантов такой оценки является расчет относительных показателей вариации. Традиционно широкое распространение для этих целей получил коэффициент вариации. Несколько реже применяется отношение размаха вариации к среднеквадратическому отклонению. Вывод о неоднородности исследуемой совокупности потому или иному признаку требует проверки гипотезы о принадлежности «выделяющихся» (аномальных) значений признака исследуемой генеральной совокупности.

3. Другим важным требованием, обеспечивающим надежность выводов корреляционного анализа, является требование достаточного числа наблюдений. На практике считается, что число наблюдений должно быть не менее чем в 5-6 раз превышать число факторов (также встречается рекомендация использовать пропорцию не менее, чем в 10 раз превышающую количество факторов). Как уже указывалось, влияние существенных причин может быть затушевано действием случайных факторов, «взаимопогашение» влияния которых на результативный показатель в известной мере происходит при выведении средней результативного показателя для массы случаев.

4. Определенные требования существуют и в отношении факторов, вводимых в исследование. Все множество факторов, оказывающих влияние на величину результативного показателя, в действительности не может быть введено в рассмотрение, да практически в этом и нет необходимости, так как их роль и значение в формировании величины результативного показателя могут иметь существенные различия. Поэтому при ограничении числа факторов, включаемых в изучение, наряду с качественным анализом целесообразно использовать и определенные количественные оценки, позволяющие конкретно охарактеризовать влияние факторов на результативный показатель (к оценкам можно отнести парные коэффициенты корреляции, ранговые коэффициенты при экспертной оценке влияния факторов и др.). Включаемые в исследование факторы должны быть независимыми друг от друга, так как наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и в значительной мере дублируют друг друга.

5. Все основные положения теории корреляции разрабатывались применительно к предположению о нормальном характере распределения исследуемых признаков. В этой связи целесообразным является изучение формы распределения, дающее возможность в известной мере обосновать правомерность применения методов корреляционного анализа.

И наконец, при построении корреляционных моделей факторы должны иметь количественное выражение, иначе составить модель корреляционной зависимости не представляется возможным.

Для ответа на вопрос о наличии или отсутствии корреляционной связи используется ряд специфических методов: так называемые элементарные приемы:

параллельное сопоставление рядов значений результативного и факторного признаков

графическое изображение данных с помощью поля корреляции

построение групповой и корреляционной таблиц), а также дисперсионный анализ. Простейшим приемом обнаружения связи является сопоставление двух параллельных рядов – ряда значений факторного признака и соответствующих ему значений результативного признака. Значения факторного признака располагают в возрастающем порядке и затем прослеживают направление изменения величины результативного признака. Результативный признак (функцию) в дальнейшем будем обозначать через у, а факторный признак – через х.

Например, по 20 туристическим фирмам были установлены затраты на рекламу (факторный признак) и количество туристов, воспользовавшихся услугами каждой фирмы (результативный признак). В табл.1.1 фирмы ранжированы по величине затрат на рекламу.

Таблица 1.1. Затраты на рекламу в зависимости от количества туристов

Порядковые номера фирм Затраты на рекламу, усл. ден. ед. Количество туристов, воспользовавшихся услугами фирмы, человек
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Можно видеть, что в целом для всей совокупности фирм увеличение затрат на рекламу приводит к увеличению количества туристов, пользующихся услугами фирмы, хотя в отдельных случаях наличие такой зависимости может и не усматриваться. Например, сопоставим данные по фирмам с порядковыми номерами 7 и 11. Здесь мы видим даже обратное соотношение: у фирмы 11 количество туристов меньше, чем у фирмы 7 и составляет 920 человек, хотя затраты на рекламу выше, чем у фирмы 7 на 1 усл. ден. ед. В каждом отдельном случае количество туристов, воспользовавшихся услугами фирмы, будет зависеть не только от размера затрат фирмы на рекламу, но и от того, как сложатся прочие факторы, определяющие величину результативного признака.

В тех случаях, когда возрастание величины факторного признака влечет за собой возрастание и величины результативного признака, говорят о возможном наличии прямой корреляционной связи. Если же с увеличением факторного признака, величина результативного признака имеет тенденцию к уменьшению, то можно предполагать обратную связь между признаками.

Показатели степени тесноты связи дают возможность охарактеризовать зависимость вариации результативного признака от вариации признака-фактора. В известной мере они дополняют и развивают уже отмеченные приемы обнаружения связи.

Зная показатели тесноты корреляционной связи, мы можем решать следующие группы вопросов:

1) о необходимости изучения данной связи между признаками и целесообразности ее практического применения;

2) сопоставляя показатели тесноты связи для различных ситуаций, можно судить о степени различий в ее проявлении для конкретных условий;

3) и, наконец, сопоставляя показатели тесноты связи результативного признака с различными факторами, можно выявить те факторы, которые в данных конкретных условиях являются решающими и главным образом воздействуют на формирование величины результативного признака.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: