Неравенства Маркова и Чебышева

Закон больших чисел и предельные теоремы теории вероятностей

Замечание. На основе экспериментальных данных было установлено, что при определённых условиях поведение суммы достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным. Для практики важно знать условия, при которых это происходит, так как позволяет прогнозировать ход явлений. Эти условия указываются в теоремах, которые называются законами больших чисел.

Под законом больших чисел в широком смысле понимается общий принцип, согласно которому, по формулировке акад. А.Н. Колмогорова, совокупное действие большого числа случайных факторов приводит (при некоторых, весьма общих, условиях) к результату, почти не зависящему от случая. Другими словами, при большом числе случайных величин их средний результат перестаёт быть случайным и может быть предсказан с большой степенью определённости.

Под законом больших чисел в узком смысле понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа испытаний к некоторым определённым постоянным.

Неравенства Маркова и Чебышева справедливы как для дискретных, так и для непрерывных случайных величин. Рассмотрение проведём для дискретных.

Пусть случайная величина Х задана рядом распределения:

Ставится задача: оценить вероятность того, что неотрицательная случайная величина примет значения, большие числа А.

Лемма 1. Неравенство Маркова. Если случайная величина Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного числа А верно неравенство .

Доказательство. Расположим значения случайной величины Х в порядке возрастания так, что: . Математическое ожидание случайной величины примет вид: . Отбрасывая первые неотрицательных слагаемых и заменяя остальные меньшей величиной А, получим: или .

Пусть ставится задача: оценить вероятность того, что отклонение случайной величины от её математического ожидания не превышает по абсолютной величине положительного числа . Если достаточно мало, то можно оценить вероятность того, что Х примет значения достаточно близкие к своему математическому ожиданию. Такая оценка была получена Чебышевым.

Лемма 2. Неравенство Чебышева. Вероятность того, что отклонение случайной величины Х от её математического ожидания по абсолютной величине меньше положительного числа не меньше, чем : .

Доказательство. События и противоположны, тогда , тогда , т.е. надо оценить вероятность . Для дисперсии случайной величины Х имеем право записать:

Или . Тогда или

.

Замечание 1. Неравенство Чебышева применяется для теоретических исследований.

Замечание 2. Для случайной величины , имеющей биномиальный закон распределения с математическим ожиданием и дисперсией .

Замечание 3. Для частоты наступления события в независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью , и имеющей дисперсию .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: