Основные понятия термодинамики

I. ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

Особенности биофизических методов

Как упоминалось выше, принцип качественной несводимости в биофизике обуславливает необходимость «качественного сплава» методов физики и биологии. Биофизические методы исследования характеризуются рядом общих свойств.

Во-первых, биофизика оперирует количественными методами, позволяющими измерить и объективно оценить исследуемое явление. Этот методологический принцип привнесен из физики.

Во-вторых, биофизика рассматривает изучаемый объект в целом, не расчленяя его. Естественно, что любое измерение неизбежно вносит в изучаемую систему некоторые возмущения, но биофизические методы стремятся свести это возмущение к минимуму. По этой причине в настоящее время широкое распространение в биофизике получают такие методы, как инфракрасная спектроскопия, исследование отраженного света, флуоресцентные методы исследований.

В-третьих, важным методологическим принципом биофизики является «стратегия системного подхода». Биофизические методы основываются на неразрывности структуры и функции, рассматривая структурно-функциональные взаимосвязи в живых системах как основной принцип их организации.

Названные особенности определяют биофизику как самостоятельное научное направление, имеющее собственный предмет исследований и методологические подходы. В следующих лекциях будут рассмотрены отдельные разделы биофизики, описаны достижения этой важной науки на современном этапе. Особое внимание будет уделено применению биофизических методов в биологии и медицине.

Термодинамика (ТД) – наука, изучающая наиболее общие законы превращения различных видов энергии в системе.

Различают термодинамику равновесных систем (классическую, равновесную) и термодинамику неравновесных систем (линейную и нелинейную).

Под термодинамической системой понимают часть пространства, ограниченную (условно) поверхностью (оболочкой). Обязательными характеристиками термодинамической системы (М) является большое количество микрочастиц (m), размеры которых много меньше самой системы: m<<M.

Различают 3 типа систем:

Изолированная – не обменивается с окружающей средой ни веществом, ни энергией.

Замкнутая (закрытая) – обменивается с окружающей средой только энергией.

Открытая – обменивается с окружающей средой энергией и веществом.

Термодинамическая система характеризуется определенными параметрами (функциями), которые количественные описывают их состояние и подразделяются на:

Экстенсивные, которые зависят от общего количества вещества в системе (масса, объем).

Интенсивные, которые не зависят от общего количества вещества в системе (давление, температура).

Термодинамические процессы – это процессы обмена энергией и веществом или переход энергии из одной формы в другую. Они бывают обратимые и необратимые.

При обратимом процессе переход от начального к конечному состоянию, и наоборот, не требует дополнительных затрат энергии. Энергия переходит из одного вида к другому без потерь. Характеризует идеальные процессы.

При необратимом процессе переход от конечного состояния к начальному требует дополнительных затрат энергии, так как процессы идут с частичными потерями энергии в виде тепла. Характеризует реальные процессы.

Основная задача термодинамики – однозначное описание изменений в термодинамической системе при её переходе из одного состояния в другое. Различают равновесное и неравновесное состояние термодинамической системы:

Равновесным называется такое состояние системы, когда ее параметры не меняются с течением времени. Интенсивные параметры одинаковы во всех точках системы, т.е. градиенты этих параметров отсутствуют. Параметры системы не меняются с течением времени.

Неравновесное называется такое состояние системы, когда ее параметры меняются с течением времени. Интенсивные параметры различны в разных точках системы, т.е. имеются градиенты этих параметров.

Градиент – изменение параметра в пространстве. Существуют градиенты: температуры - DТ/Dх, концентрации – Dс/Dх, давления – Dр/Dх и т.д..

Связи между параметрами системы называют уравнениями состояния. Изменение любого из параметров приводит к изменению состояния системы. Переход системы от одного состояния к другому происходит в результате различных процессов, которые подчиняются законам ТД.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: