Глава. Набор хирургических инструментов для эндовидеохирургии

Эндоскопия – метод диагностики и лечения заболеваний человека, выполняемый через естественные физиологические отверстия или точечные проколы покровов с использованием оптических приборов.

Различают диагностическую и лечебную эндоскопию.

Рисунок 23. Набор хирургических инструментов для эндовидеохиругии.

 

Первая позволяет произвести диагностические исследования, вторая – лечение.

 

       Эндоскопическая хирургия предъявляет высокие требования к оборудова­нию и инструментам, используемым при проведении операций. Это функцио­нальность и надёжность, современный дизайн и эргономичность. Цель этой главы — представить различное оборудование и инструменты, применяемые в эндохирургии, а также объяснить их основные функции. Полный комплект инструментов и аппаратов, позволяющий выполнять большинство операций, получил название «Эндохирургический комплекс». Основной узел этого комплекса, позволяющий передавать изображение на экран монитора, представлен эндовидеосистемой. Она состоит из лапароскопа, оптической си­стемы с миниатюрной видеокамерой, световодного жгута и монитора видео­изображения. Сигнал, передаваемый видеокамерой на монитор, можно запи­сать на видеомагнитофон для последующего просмотра и анализа.

 

3.1 Оптическая система. Эндоскопическая оптическая система (лапаро- или торакоскоп) — пер­вое звено в цепи передачи изображения. Основной элемент этого инструмента — оптическая трубка с системой миниатюрных линз. Лапароскоп передаёт изображение из полости человеческого тела на видеокамеру. Лапа­роскопические оптические системы имеют следующие технические параметры.

        1. Диаметр инструмента может быть 10, 5 мм и менее. 10-миллиметровая оптика наиболее распространена в оперативной эндохирургии. 5-милли­метровый лапароскоп применяют в детской хирургии и для диагностиче­ских процедур. В последние годы был сконструирован лапароскоп диа­метром 1,9 мм.

       2. Входной угол зрения — угол, в пределах которого лапароскоп передаёт входное изображение на видеокамеру. В среднем этот параметр лежит в пределах 80°.

3. Направление оси зрения — 0, 30, 45, 75°. Если ось зрения составляет 0°, лапароскоп называют торцовым или прямым. В остальных случаях лапароскоп называют косым. Косая оптика более функциональна и удобна при работе в условиях двухмерного изображения. Она позволяет осмотреть объект с разных сторон, не меняя точки введе­ния инструмента. В распоряжении каждого хирурга должна быть как пря­мая, так и косая оптика.

          Рис. 24. Эндохирургический комплекс.

 

     В последние годы был предложены видеотроакар и одноразовый лапаро­скоп.

 

3.2 Видеокамера. Несомненно, огромное влияние на развитие оперативной лапароскопии оказало бурное развитие технологии видеокамер. Высококачественная камера обладает минимальной массой, высоким разрешением, способностью переда­вать мельчайшие нюансы хирургических объектов и высокой чувствительнос­тью, позволяющей работать с источниками света малой мощности.

    Основной элемент любой современной эндовидеокамеры — полупровод­никовая фоточувствительная кремниевая пластинка-кристалл, предназначен­ная для преобразования оптического изображения, переданного лапароскопом, в электрический сигнал. Принцип работы основан на формировании и перено­се зарядов по поверхности или внутри полупроводникового кристалла. Этот кристалл носит название прибора с зарядовой связью (ПЗС). В зависимости от назначения ПЗС подразделяют на линейные и матричные. В малогабаритных эндовидеокамерах используют матричные ПЗС, где фоточувствительные эле­менты-пикселы организованы в матрицу по строкам и столбцам. Чтобы ПЗС формировал цветное изображение, всю матрицу покрывают цветным свето­фильтром так, чтобы над каждым пикселом находился миниатюрный свето­фильтр определённого цвета. Таких цветов три — зелёный, пурпурный и голу­бой, причём зелёными светофильтрами покрыта половина пикселов, так как эта составляющая видеосигнала несёт информацию о яркости.

 

90º

Рис. 25. Направление оси зрения лапароскопа.

 

Рис. 26. Разновидности лапароскопов: ди­агностический, 10-миллиметровый пря­мой, 10-миллиметровый косой

 

Основные характеристики матричного ПЗС, или ПЗС-матрицы.

1. Минимальный уровень освещения.

2. Размер светочувствительного поля по диагонали.

3. Количество светочувствительных элементов (пикселов).

4. Отношение сигнал-шум.

5. Диапазон работы электронного затвора.

Минимальный уровень освещения — это тот нижний порог внешнего осве­щения, при котором видеокамера выдаёт сигнал, позволяющий адекватно раз­личать объекты во время выполнения операции. У современных видеокамер этот параметр не ниже 3 лк.     Современные одноматричные видеокамеры для обеспечения качества видеосигнала телевизионного стандарта S-VHS имеют не менее 470000 пикселов на кристалле размером всего 1/3 дюйма (1 дюйм = 2,54 см). При этом разрешение достигает 430 ТВЛ (телевизионных линий). Отношение сигнал-шум современных камер более 46 дБ. Чем больше этот па­раметр, тем менее на затемнённых участках изображения будет заметна помеха в виде «мусора» или «снега». Диапазон работы электронного затвора таких ка­мер от 1/50 до 1/10000 с, что позволяет при изменении освещённости более

Рис. 27. Видеотроакар («Visiport») и одноразовый лапароскоп.

 

чем в 200 раз работать с качественным вы­сококонтрастным изображением без по­явления пересвета или «блика».

В последнее время в видеокамерах высокого класса применяют устройства с тремя ПЗС-матрицами. Это позволяет получить изображение высокого качества с разрешением не менее 550—600 ТВЛ. В трёхматричной системе цветное изображе­ние с лапароскопа поступает на цветоде-лительный блок (призму), осуществляю­щий разделение изображения на зелёную, красную и синюю составляющие. Они проецируются на три раздельных кристал­ла матричных ПЗС, каждый из которых формирует свой сигнал.     Однако эти ка­меры более громоздки, требуют примене­ния оптики с малыми аберрациями (ис­кажениями по краям изображения) и более высокой технологии изготовления. Вслед­ствие этого такие камеры не нашли пока широкого распространения и достаточно дороги по сравнению с однокристальны­ми камерами.

Стереоскопическая эндовидеосистема даёт ощущение трёхмерного объём­ного изображения. Эта система включает стереолапароскоп, совмещённую с ним стереовидеокамеру, электронное устройство обработки сигнала, монитор изображения и специальные очки. Стереоизображение может быть получено только при фокусировании взгляда на мониторе. Отведение взгляда от экрана (например, при смене инструментов) приводит к неприятному ощущению мер­цания. Стереоизображение не даёт существенных преимуществ по сравнению с обычной моносистемой, и все известные эндохирургические операции выпол­нимы при двухмерном изображении. Кроме того, стоимость стереооборудова-ния в несколько раз превосходит стоимость традиционного.

Практически все современные видеокамеры и лапароскопы водонепрони­цаемы, что позволяет проводить их стерилизацию в растворах «Сайдекс» и «Вер-кон». Ни в коем случае нельзя применять для стерилизации видеокамер и ла­пароскопов сухожаровой шкаф, так как могут произойти их разгерметизация, выход из строя электроники и оптики. Наиболее простой способ соблюдения асептики при работе с видеокамерой — помещение её перед операцией в сте­рильный матерчатый чехол.

 

3.3 Источник света. Источник света служит для освещения внутренних полостей при проведе­нии эндохирургических вмешательств. Свет в полость подают через лапароскоп, с которым источник света связан гибким световодным жгутом,

Рис. 28. Эндовидеокамера.

 

представляющим собой сотни тонких стеклянных волокон, находящихся в общей оболоч­ке. На торцовых поверхностях световодного жгута располо­жены разъёмные элементы стыковки — с одной стороны с осветителем, с другой — с ла­пароскопом. Световодный жгут требует бережного обраще­ния, не допускает резкого из­гиба, так как в этом случае мо­гут обломиться его тонкие нежные стеклянные волокна. Источник света в осветителе — лампа. Наиболее дешёвая и доступная лампа — галогеновая. Однако она имеет недостатки — малый ресурс работы (не более 100 ч) и жёлто-красный спектр излучения, который отрицательно сказывается на качестве передачи цвета изобра­жения. Лампа имеет в спектре излучения мощную инфракрасную составляющую, способную без применения в осветителе специальных фильтров вызвать ожог тка­ней при достаточно близком контакте лапароскопа с внутренними органами.

Более перспективный осветитель — прибор с ксеноновой лампой, которая по сравнению с галогеновой имеет спектр излучения, приближающийся к есте­ственному. Её ресурс выше — до 1000 ч. Источник света на ксеноновой лампе позволяет получать большую освещённость объектов при меньших затратах эле­ктроэнергии, так как коэффициент полезного действия (КПД) у неё выше. Современные источники света снабжены сменными выходными адаптерами, позволяющими подключать к осветителю световодные жгуты различных фирм-производителей. Выходную освещённость источника света регулируют либо вруч­ную, либо автоматически от видеосигнала видеокамеры. В последнем случае чем темнее изображение, тем больше света автоматически выдаёт источник света. Следу­ет отметить, что для источни­ков света в последнее время начали применять металлогалоидные лампы. Они имеют превосходный спектр света, оптимизированный к ПЗС-матрицам видеокамеры, высо­кий ресурс работы (до 1000 ч) и высокий КПД. При мощно­сти 50 Вт эти лампы обеспе­чивают такую же освещён­ность, как ксеноновые при 150—200 Вт и галогеновые при

 

Рис. 29. Источник света.

Рис. 30. Видеокамера, совмещённая с осветителем.

 

250-300 Вт. К тому же этот малогабаритный осветитель легко разместить в корпусе совместно с видеокамерой, что позволяет получить законченный эндовидеокомплекс.

 

3.4 Инсуффлятор. Инсуффлятор — прибор, обеспечивающий подачу газа в брюшную полость для создания необходимого пространства и поддерживающий заданное давление при проведении операции. На приборе расположена панель уп­равления, позволяющая регулировать следующие функции:

1. Поддержание постоянного внутрибрюшного давления (от 0 до 30 мм рт.ст.).

2. Переключение скорости подачи газа (подача малая и большая).

3. Индикация заданного давления.

4. Индикация реального внутрибрюшного давления.

5. Индикация количества израсходованного газа.

6. Включение подачи газа.

Инсуффлятор последнего поколения практически не требует регулирова­ния и переключений во время операции. Он автоматически поддерживает уста­новленное давление в брюшной полости пациента, меняет скорость подачи газа в зависимости от скорости его утечки, подаёт световые и звуковые сигна­лы о всех аварийных ситуациях во время проведения вмешательства (отсутст­вие газа в баллоне, обрыв шланга, пережатие шланга и т.д.). Для оперативной лапароскопии необходим мощный Инсуффлятор со скоростью подачи газа не менее 9 л/мин. Это важно для поддержания необходимого пространства при замене инструментов, введении сшивающих аппаратов, извлечении препарата или значительной аспирации при кровотечении, т.е. во всех ситуациях, приво­дящих к значительной утечке газа и требующих его быстрого восполнения.

Рис. 31. Инсуффлятор.

Рис. 32. Аспиратор-ирригатор.

Рис. 33. Электрохирургический генератор.

 

3.5 Система аспирации ирригации. Практически при всех лапароскопических процеду­рах, как и при традиционных хирургических операциях, не­обходимы аспирация и ирри­гация в зоне операционного поля. Для этой цели разрабо­таны специальные инструмен­ты и оборудование. Инстру­менты могут иметь общий канал для подачи промывной жидкости и отсоса или раз­дельные каналы. В последнем случае можно осуществить од­новременную подачу и отсос, что резко сокращает время ас­пирации-ирригации и увели­чивает эффективность проце­дуры. Аспиратор-ирригатор — прибор с мощными и регули­руемыми подачей и вакуум­ным отсасыванием стерильной жидкости. Нужные параметры мощности устанавливают ин­дивидуально в зависимости от вида операции. Прибор снабжён накопитель­ной ёмкостью (не менее 2 л) и устройством, автоматически выключающим его при пере­полнении ёмкости. Это пре­дотвращает выход из строя внутренних узлов устройства и повышает срок его службы.

 

3.6 Электрохирургический аппарат. Широко применяемая в операционных всего мира ра­диочастотная электрическая энергия представляет идеаль­ный источник для рассечения

тканей и обеспечения гемоста­за. Прибор для получения вы­сокочастотных импульсов на­зывают электрохирургическим генератором (ЭХГ) или элек­троножом. Совре­менный электронож работает в моно- и биполярном режи­мах, имеет достаточно большую мощность (не менее 200 Вт) и развитую систему сигнализа­ции, предотвращающую пора­жение пациента и хирурга при проведении эндохирургических вмешательств. На пере­дней панели электроножа рас­положены ручки регулировки и индикации мощности реза­ния и коагуляции, выходные разъёмы для подключения моно-, биполярного инструмента и электрода пациента. Там же расположены кнопка включения смешанного режима резания с гемостазом и переключатель режима с моно- на биполярную коагуляцию.

 

Рис. 34. Видеомонитор.

 

 

3.7 Видеомонитор. Видеомонитор — устройство для восприятия видеоинформации, послед­нее звено в передаче изображения. Наиболее дешёвый и доступный прибор для просмотра видеоинформации — обычный бытовой телевизор. Од­нако он обладает малой разрешающей способностью (не более 300 ТВЛ) и не отвечает стандарту электробезопасности (работа с ним может привести к пора­жению электрическим током). Медицинский монитор лишён этих недостат­ков. Его разрешающая способность не менее 500—600 ТВЛ, электрозащита на­дёжна во всех отношениях. Размер экрана по диагонали у мониторов варьирует от 14 до 25 дюймов. В эндохирургии предпочтителен монитор с размером экра­на по диагонали 21 дюйм.

 

3.8 Видеомагнитофон. Видеомагнитофон — устройство для записи, долговременного хранения и просмотра видеоизображений. Для хранения и последующего анализа записи операций вполне подходит обычный бытовой видеомагнитофон формата VHS с двумя или четырьмя головками. Четырёхголовочный аппарат, в отличие от двухголовочного, при воспроизведении позволяет получить чёткий стоп-кадр. Но бытовые магнитофоны имеют разрешающую способность не более 250 ТВЛ и отношение сигнал-шум не более 46 дБ.   Если результаты записи необходимо использовать в качестве учебных пособий, для показа по телевидению и тира­жирования, предпочтение отдают видеомагнитофону формата S-VHS. Он зна­чительно дороже, но обеспечивает разрешение не менее 400 ТВЛ с высоким отношением сигнал-шум (например, видеомагнитофоны фирмы «U-Matic»).   Каждый хирург должен записывать свои операции, особенно на этапе освоения того или иного вмешательства. Это помогает совершенствовать операционную технику, даёт возможность коллективно анализировать ошибки и неточности.

 

3.9 Инструменты. Эндохирургические инструменты могут быть разделены на инструменты многократного (металлические) и одноразового (пластиковые) использования. Большинство хирургов применяют в своей работе оба вида инструментов. На­иболее доступные и дешёвые в эксплуатации — многократно используемые разборные металлические инструменты. Они выполнены из нержавеющих ста­лей и сплавов. Для оперирования пациентов, страдающих ожирением, исполь­зуют длинные (более 300 мм) нестандартные инструменты. Все лапароскопиче­ские инструменты могут быть разделены на две группы:

1. Инструменты доступа.

2. Инструменты для мани­пуляций.

Инструменты доступа:

К этой группе относят троакары, торакопорты, рас­ширители ран и переходники, гильзы мониторинга (канюли для динамической лапароско­пии), троакар для кольпотомии, инструменты для наложе­ния ПП (игла Вереша).

Троакары различны по ус­тройству и размерам. Имеют общую функцию — предназна­чены для обеспечения доступа к операционному полю и создания оперативного прост­ранства.      Для этого в троакарной трубке имеются инстру­ментальный канал с клапаном и краник канала газоподачи. Для прокола стенок полостей внутрь троакарной трубки вставляют стилет. Стилеты имеют различную

 

Рис. 35. Троакарная группа инструментов.

 

Рис. 36. Троакар с атравматическим сти­летом.

 

форму и могут быть снабжены атравматическим защитным колпачком для бе­зопасного проникновения через ткани. Троакары большего диаметра снабжены переходными вставками для введения через них инструментов малого диаметра. Зарубежные фирмы выпускают одноразовые троакары с защитным кол­пачком.

Торакопорты применяют для выпол­нения торакоскопических вмешательств.

В зарубежной литературе существу­ют синонимы для обозначения различных частей инструментов доступа. Троакары называют портами, троакарные трубки — канюлями, переходные вставки — редук­торами.

Расширители ран и переходники при­меняют при необходимости увеличения размеров доступа для доставки инструмен­тов с большим диаметром, гемостатической губки или удаления массивных объ­ектов из полостей.

Гильзы для лапаромониторинга име­ют различный диаметр. Гильзы, фиксиро­ванные к коже, могут быть оставлены в тканях на продолжительное время.

Троакар для кольпотомии в комплекте с 10-миллиметровым «когтистым» захватом входит в кольпотомический набор. Его применяют для извлечения препарата через задний свод влагалища без рассечения передней брюшной стенки.

Игла Вереша служит для наложения первичного ПП с целью создания «воздушной подушки» и безопасного введения первого троакара в брюшную полость.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: