Дискретный канал

ДК включает НКС + УПС приема и передачи.

Алфавит ДК состоит из двух сообщений “1” и “0”.

Основными характеристиками ДК являются:

1. Скорость передачи информации R [бит/с].

2. Скорость модуляции B [Бод].

3. Верность передачи информации характеризуется коэффициентом ошибок по единичным элементам.

– экспериментально измеряемая величина kош является оценкой для вероятности ошибки – .

Статистика ошибок в ДК.

Случайный процесс возникновения ошибок описывается:

1. Заданием входного А и выходного алфавитов.

2. Совокупностью переходных вероятностей ,

где А – произвольный символ (последовательность входного алфавита);

- произвольный символ (последовательность выходного алфавита).

Говорят - вероятность приема символа при условии передачи А.

Для расчета переходных вероятностей , любых последовательностей конечной длины существуют математические модели ошибок в дискретном канале.

Дискретный симметричный канал без памяти.

Это канал, для которого в любой момент времени вероятность появления символа на выходе зависит только от символа на входе.


Рисунок 1.15 – Диграмма (граф) переходов

вероятность ошибки

.

Вероятности правильного приема

Если эти вероятности заданы, то легко получить вероятность любой последовательности на выходе, зная последовательность на входе .

Определение вероятности ошибок кратности t в принятой последовательности

Положим, что приемником принята последовательность длиной n- элементов.

Вероятность безошибочного приема

 
 


(1.11)

Вероятность что ошибка только в 1ом элементе

(1.12)

Такая же вероятность будет и для ошибки во втором разряде.

ЗНАЧИТ! Для получения вероятности того, что среди n принятых элементов содержится одна ошибка (на любом месте), нужно просуммировать вероятности всех возможных комбинаций с ошибкой в одном разряде. Таких комбинаций будет n.

Для определения вероятности t ошибок в n-элементной комбинации, в любом сочетании, нужно определить вероятность одного, заданного сочетания ошибок веса t

Затем, умножить данную вероятность на количество всех возможных сочетаний ошибок данного веса.

 
 


(1.13)


Тогда окончательно:

(1.14)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: