double arrow

N-арные отношения (отношения степени n)


В математике n-арные отношения рассматриваются относительно редко, в отличие от баз данных, где наиболее важными являются именно отношения, заданные на декартовом произведении более чем двух множеств.
Пример 6. В некотором университете на математическом факультете учатся студенты Иванов, Петров и Сидоров. Лекции им читают преподаватели Пушников, Цыганов и Шарипов, причем известны следующие факты:
Пушников читает лекции по алгебре и базам данных, соответственно, 40 и 80 часов в семестр.
Цыганов читает лекции по геометрии, 50 часов в семестр.
Шарипов читает лекции по алгебре и геометрии, соответственно, 40 и 50 часов в семестр.
Студент Иванов посещает лекции по алгебре у Шарипова и по базам данных у Пушникова.
Студент Петров посещает лекции по алгебре у Пушникова и по геометрии у Цыганова.
Студент Сидоров посещает лекции по геометрии у Цыганова и по базам данных у Пушникова.
Для того чтобы формально описать данную ситуацию (например, в целях разработки информационной системы, учитывающей данные о ходе учебного процесса), введем три множества:
Множество преподавателей = {Пушников, Цыганов, Шарипов}.
Множество предметов = {Алгебра, Геометрия, Базы данных}.
Множество студентов = {Иванов, Петров, Сидоров}.
Имеющиеся факты можно разделить на две группы.1 группа (факты 1-3) - факты о преподавателях, 2 группа (факты 4-6) - факты о студентах.




Рассмотрим отношение подробнее. Оно задано на декартовом произведении . Это произведение, содержащее 3*3*3=27 кортежей, можно назвать "Студенты-Лекции-Преподаватели". Множество представляет собой совокупность всехвозможных вариантов посещения студентами лекций. Отношение же показывает текущее состояние учебного процесса. Очевидно, что отношение является изменяемым во времени отношением.
Итак, факты о ходе учебного процесса удалось отразить в виде двух отношений третьей степени (3-арных), а сами отношения изобразить в виде таблиц с тремя колонками.
Удобство использования табличной формы для задания отношения определяется в данном случае следующими факторами:
Все используемые множества конечны.
При добавлении или удалении студентов, предметов, преподавателей просто добавляются или удаляются соответствующие строки в таблице.
Нас сейчас не интересует вопрос, хороши ли полученные отношения. Заметим пока только, что, как показывают следующие замечания, не любую строку можно добавить в таблицу "Посещать лекции".
Замечание. В таблицу "Посещать лекции" нельзя добавить две одинаковые строки, т.к таблица изображает отношение , а в отношении (как и в любом множестве) не может быть двух одинаковых элементов. Это пример синтаксического ограничения - такое ограничение задано в определении понятия отношение (одинаковых строк не может быть ни в одной таблице, задающей отношение).
Замечание. В таблицу "Посещать лекции" нельзя добавить кортеж (Иванов, Геометрия, Пушников). Действительно, из таблицы "Читает лекции по…", представляющей отношение , следует, что Пушников не читает предмет "Геометрия". Оказалось, что таблицы связаны друг с другом, и существенным образом! Это пример семантического ограничения - такое ограничение является следствием нашей трактовки данных, хранящихся в отношении (следствием понимания смысла данных).







Сейчас читают про: