double arrow

Развертки многогранников

Способ ребер

Способ граней

Сечение многогранников плоскостью

РАЗВЕРТКИ МНОГОГРАННИКОВ

СЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ.

Многогранник есть геометрическое тело, ограниченное плоскими многоугольниками - (гранями, пересекающимися по прямым линиям-рёбрам). Фигура сечения многогранника есть плоский многоугольник, сторонами которого являются линии пересечения заданной плоскости с плоскостями граней, а вершинами — точки пересечения рёбер многогранника с заданной плоскостью.

К многогранникам относятся призмы, пирамиды и более сложные объекты.

Призма – это многогранник, основания которого являются n-угольник, а боковые ребра взаимно параллельны.

Пирамида – многогранник, основанием которого является n-угольник, а боковые грани - треугольники.

Построение фигуры сечения многогранника плоскостью может выполняться двумя способами:

· путем определения линии пересечения заданной плоскости с каждой из плоскостей (граней), ограничивающих геометрическое тело многогранника (эти линии - стороны фигуры сечения);

· путем нахождения точек пересечения всех ребер с заданной плоскостью (эти точки - вершины фигуры сечения).

Первый способ называется способом граней, второй - способом ребер. Выбор способа построения фигуры сечения зависит от положе­ния секущей плоскости, рёбер и граней многогранника относительно плоскостей проекций.




Суть способа сводится к последовательному определению линий пересечения двух плоскостей, одна из которых является заданной, а другая - какой-либо гранью многогранника (см. разд. 6). Для построения же самой фигуры сечения определяют точки пресечения найденных прямых, которые являются вершинами многоугольника сечения.

Этот способ заключается в определении точек встречи прямых (ребер) с заданной плоскостью (см. разд. 7). Установив последовательно для всех ребер точки встречи их с секущей плоскостью, соединяют эти точки отрезками прямых и получают многоугольник сечения.

В инженерном деле многогранники чаще всего реализуются как оболочки заданных форм и размеров. Для их изготовления необходимо уметь выполнить развертку (выкройку) таких оболочек.

Развёртка многогранника представляет собой плоскую фигуру, полученную последовательным совмещением всех граней многогранника с плоскостью чертежа таким образом, чтобы грани примыкали друг к другу по линиям сгиба (рёбрам).

Для построения развёртки многогранника необходимо знать натуральные величины всех его граней, поэтому задача построения развертки многогранника решается в два этапа:

1) определяют натуральную величину каждой грани (см. разд. 9);

2) потом путем вращения вокруг соответствующей линии (ребра) (см. разд. 9) совмещают грани с плоскостью чертежа.






Сейчас читают про: