Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Развертки многогранников




Способ ребер

Способ граней

Сечение многогранников плоскостью

РАЗВЕРТКИ МНОГОГРАННИКОВ

СЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ.

Многогранник есть геометрическое тело, ограниченное плоскими многоугольниками - (гранями, пересекающимися по прямым линиям-рёбрам). Фигура сечения многогранника есть плоский многоугольник, сторонами которого являются линии пересечения заданной плоскости с плоскостями граней, а вершинами — точки пересечения рёбер многогранника с заданной плоскостью.

К многогранникам относятся призмы, пирамиды и более сложные объекты.

Призма – это многогранник, основания которого являются n-угольник, а боковые ребра взаимно параллельны.

Пирамида – многогранник, основанием которого является n-угольник, а боковые грани - треугольники.

Построение фигуры сечения многогранника плоскостью может выполняться двумя способами:

· путем определения линии пересечения заданной плоскости с каждой из плоскостей (граней), ограничивающих геометрическое тело многогранника (эти линии - стороны фигуры сечения);

· путем нахождения точек пересечения всех ребер с заданной плоскостью (эти точки - вершины фигуры сечения).

Первый способ называется способом граней, второй - способом ребер. Выбор способа построения фигуры сечения зависит от положе­ния секущей плоскости, рёбер и граней многогранника относительно плоскостей проекций.

Суть способа сводится к последовательному определению линий пересечения двух плоскостей, одна из которых является заданной, а другая - какой-либо гранью многогранника (см. разд. 6). Для построения же самой фигуры сечения определяют точки пресечения найденных прямых, которые являются вершинами многоугольника сечения.

Этот способ заключается в определении точек встречи прямых (ребер) с заданной плоскостью (см. разд. 7). Установив последовательно для всех ребер точки встречи их с секущей плоскостью, соединяют эти точки отрезками прямых и получают многоугольник сечения.

В инженерном деле многогранники чаще всего реализуются как оболочки заданных форм и размеров. Для их изготовления необходимо уметь выполнить развертку (выкройку) таких оболочек.

Развёртка многогранника представляет собой плоскую фигуру, полученную последовательным совмещением всех граней многогранника с плоскостью чертежа таким образом, чтобы грани примыкали друг к другу по линиям сгиба (рёбрам).

Для построения развёртки многогранника необходимо знать натуральные величины всех его граней, поэтому задача построения развертки многогранника решается в два этапа:

1) определяют натуральную величину каждой грани (см. разд. 9);

2) потом путем вращения вокруг соответствующей линии (ребра) (см. разд. 9) совмещают грани с плоскостью чертежа.





Дата добавления: 2014-02-24; просмотров: 736; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8633 - | 7464 - или читать все...

Читайте также:

 

35.173.57.84 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.