Из выражения (74) следует, что амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При частоте вынуждающей силы, приближающейся к частоте собственных колебаний системы, амплитуда колебаний увеличивается. Частоту изменения вынуждающей силы, при которой амплитуда вынужденных колебаний достигает максимального значения, называют резонансной. Расчёты показывают, что
wрез =
(78)
Подставив это значение частоты в выражение (74), получим формулу амплитуды при резонансе:
Арез =
(79)
Из выражения (79) следует, что при отсутствии сопротивления среды
резонансная амплитуда обращалась бы в бесконечность. Согласно формуле (78) при r → 0, а следовательно и δ → 0, ωрез→ωo.
Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы показана на рисунке 13. Отдельные кривые на графике
соответствуют различным значениям параметра d. В соответствии с выражениями (78) и (79), чем меньше d, тем выше и правее лежит максимум данной кривой. При очень большом затухании (таком, что 2d2>wо2) выражение для резонансной частоты становится мнимым. Это означает, что при этих условиях резонанс не наблюдается - с увеличением частоты амплитуда вынужденных колебаний монотонно убывает. Изображенная на рисунке 13 совокупность графиков функции (79), соответствующих различным значениям параметра d, называется резонансными кривыми.
|
|
|
По поводу резонансных кривых можно сделать еще следующие замечания. При стремлении wо к нулю все кривые приходят к одному и тому же, отличному от нуля, предельному значению, равному fо/wо2, т. е. Fo/k. Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы величины F o. При w → ∞ все кривые асимптотически стремятся к нулю, так как при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместиться из положения равновесия. Наконец, отметим, что чем меньше d, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» получается максимум. Из формулы (79) вытекает, что при малом затухании (т. е. при d<<w0) амплитуда при резонансе приближенно равна
Арез =
(80)
Разделим это выражениена смещение xо из положения равновесия под действием постоянной силы F 0, учитывая, что xо =f0/wo2.
В результате получим:
(81)
Таким образом, добротность Q показывает, во сколько раз амплитуда в момент резонанса превышает смещение системы из положения равновесия под действием постоянной силы той же величины, что и амплитуда вынуждающей силы (это справедливо лишь при небольшом затухании).
Как видно из рис.14, вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания j лежит в пределах от 0 до p. При изменении частоты вынуждающей силы меняется и сдвиг фаз между смещением и вынуждающей силой.
|
|
|
Т.к. tgj =
, то при w<<w 0 tgj =
, т.е. j ® 0. Следовательно, фаза смещений почти совпадает с фазой вынуждающей силы. С увеличением w, при w®w0 и tgj ® p /2. Частоте w 0 соответствует j = p /2. Т.е. при резонансе вынужденные колебания отстают по фазе от вынуждающей силы на p/2. Резонансная частота меньше собственной. Следовательно, в момент резонанса j < p/2. При дальнейшем увеличении частоты w, когда w >> w 0, tgj = -2δ/ω и сдвиг фаз становится равным p. Зависимость j от w при разных значениях d показана графически на рисунке 14.
При слабом затухании wрез» w0, и значение j при резонансе можно считать равным p/2.Сдвиг фаз на p/2 при резонансе означает, что вынуждающая сила опережает смещение на Т /4. При этом условии работа вынуждающей силы всегда положительна и приток энергии к колебательной системе максимален.
С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота колебаний этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий. В противном случае возникают вибрации, которые могут вызвать катастрофу. Известны случаи, когда обрушивались мосты при прохождении по ним марширующих колонн солдат. Это происходило потому, что собственная частота колебаний моста оказывалась близкой к частоте, с которой шагала колонна.
Вместе с тем явление резонанса часто оказывается весьма полезным, особенно в акустике, радиотехнике и т.д.