Содержание и эксплуатация водозаборных сооружений

Содержание и эксплуатация водозаборных сооружений имеет огромное значение в профилактике загрязнения питьевой воды.

Ближе 20 метров от колодца или каптажа не допускается осуществление деятельности, способной привести к загрязнению воды.

Подъем воды из водозабора с помощью насосов считается наиболее рациональным, хотя и допускается использование общественного ведра или бадьи. Но вот подъем воды из колодца приносимыми ведрами, вычерпывание воды из общественной бадьи приносимыми ковшами - не допускается.

Для защиты от замерзания и утепления водозабора используют стружку или опилки, чистую прессованную солому или сено; использование стекловаты не допускается.

Колодец и каптажа не реже одного раза в год нуждаются в периодической чистке с одновременным текущим ремонтом оборудования и креплений. После каждой чистки или ремонта производится дезинфекция водозабора с последующей промывкой.

При неисправимом износе оборудования, коррозии обсадных труб, стойкого заиливания фильтров, обрушения срубов, резком уменьшении дебита, неустранимом ухудшении качества питьевой воды, ставшей непригодной для даже хозяйственных нужд, водозаборное сооружение подлежит ликвидации: демонтаж оборудования, тампонаж колодца чистым грунтом или глиной с плотной утрамбовкой.

Помните, что от правильности устройства, оборудования и эксплуатации водозаборного сооружения зависит обеспечение нас безопасной питьевой водой постоянного качества и предупреждение как заболеваний инфекциями, передающимися водным путем, так возможных интоксикаций химическими веществами.

15.Безреагентные способы обеззараживания имеется в виду обработка воды физическим воздействием.

При физических методах обеззараживания нужно подвести к единице объема воды установленную численность энергии, характеризуемое как интенсивность действия (силы излучения) на время обеззараживания

Физические методы обеззараживания питьевой воды:

1. Кипячение

2. Ультрафиолетовое излучение

3. Электроимпульсный способ

4. Обеззараживание ультразвуком

5. Радиационное обеззараживание

6. Обеззараживание с помощью ионообменных смол

Из физических методов обеззараживания воды самым популярным и верным считается кипячение.

При кипячении уничтожаются большинство бактерий, микробов, бактериофагов, вирусов, антибиотиков и остальные биологические объекты, которые находятся в открытых водоисточниках и как следствие в системах центрального водоснабжения.

Также, при кипячении воды удаляются растворенные газы и вода становится более мягкой. Вкусовые свойства воды при кипячении изменяются мало.

Для хорошей дезинфекции рекомендуется прокипятить воду на протяжении 15 — 20 мин., так как при недолгом кипячении мельчайшие организмы, их споры, яички гельминтов все-таки имеют шансы сохранить жизнеспособность (особенно в случае если мельчайшие организмы адсорбированы на жестких частичках).

Но использование кипячения в промышленных масштабах, не осуществимо ввиду высокой стоимости процесса.

Обработка УФ-излучением – многообещающий промышленный метод дезинфекции воды. В этом методе используется свет с протяженностью волны 254 нм (или примерно), который называется антибактериальным.

Дезинфицирующие свойства данного света обусловлены особым воздействием на клеточный обмен, а также на ферментные системы бактериальной клетки. В итоге антибактериальный свет истребляет вегетативные и споровые формы микробов.

Установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч. Сами установки представлят собой камеры сделанные из нержавеющей стали с размещенными внутри Ультрафиолетовыми-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, постоянно подвергается ультрафиолетовому облучению, который убивает все оказавшиеся в ней мельчайшие организмы.

Хороший результат обеззараживания питьевой воды достигается при применении УФ-установок после всех иных систем очистки.

Метод УФ-излучения применим как в виде основного средства дезинфекции, так и в виде альтернативной кандидатуры, потому, что данный метод абсолютно безопасен и эффективен.

Отметим, что в отличие от окислительных методов при УФ-облучении не образуются вторичные токсины, и потому верхнего порога дозы ультрафиолетового облучения не существует. Повышением дозы УФ-облучения практически всегда можно достичь желаемого уровня обеззараживания.

Также УФ-облучение не ухудшает органолептические качества воды, в следствии этого данный метод может быть отнесен к экологически чистым способам обработки воды.

Но даже у этого метода имеются недостатки. УФ-обработка не обеспечивает пролонгированного действия в отличие от метода озонирования. Именно отсутствие последействия делает проблемным ее использование в тех случаях, когда временной интервал перед использованием воды довольно велик, к примеру в случае централизованного водоснабжения.

Для персонального водоснабжения УФ-установки считаются более перспективными.

Также при УФ-излучении, возможна реактивация микроорганизмов и даже выработка новых штаммов, стойких к лучевому поражению.

Данный прием просит требовательнейшего соблюдения технологии. Организация процесса УФ обеззараживания требует больших инвестиций, чем у метода хлорирования, но меньших, чем у озонирования. Невысокие эксплуатационные затраты делают УФ-обеззараживание и хлорирование сравнимо недорогими способами очистки воды. Расход электричества незначителен, а цена ежегодной замены ламп составляют максимум 10% от стоимости установки.

Снижает эффективность работы установок УФ-обеззараживания при длительной эксплуатации, засорение кварцевых чехлов ламп отложениями минерального и органического. Солидные установки снабжаются автоматической системой очистки, осуществляющей промывку методом циркулирования через установку воды с добавлением пищевых кислот.

В остальных случаях используется механическая очистка.

Еще моментом, снижающим эффективность УФ-обеззараживания, считается мутность начальной воды. Происходит рассеивание лучей, что значительно ухудшает эффект обработки воды.

В данном способе обеззараживания воды употребляется ультразвук. В первый раз данный способ был предложен в 1928 году. Механизм действия ультразвука до конца пока еще не изучен. Есть некие предположения:

- ультразвук вызывает образование пустот в завихренной части, это и приводит к разрыву клеточных стенок бактерий;

— ультразвук вызывает выделение растворенного в воде газа, а пузырьки от газа, оказавшиеся в бактериальной клетке, вызывают разрыв клетки.

Превосходством применения ультразвука перед остальными методами обеззараживания сточных вод является его нечувствительность к таким моментам, как высокая мутность и цветность воды, количество микроорганизмов и присутствие в воде растворенных веществ.

Единственный момент, который оказывает большое влияние на обеззараживание сточных вод ультразвуком является - интенсивность ультразвуковых колебаний. Ультразвук — представляет собой звуковые колебания, частота которых существенно выше уровня частоты слышимости человеческого уха. Частота ультразвука от 20000 до 1000000 Гц, в следствие чего и появилась способность, которая губительным образом отражается на состоянии микроорганизмов. Бактерицидное влияние ультразвука различной частоты очень существенно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очищение воды ультразвуком считается одним из самых современных способов дезинфекции. Ультразвуковое воздействие не часто используется в фильтрах обеззараживания питьевой воды, однако эффективность данного метода позволяет говорить о перспективности метода обеззараживания воды ультразвуком, даже несмотря на его дороговизну.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: