Конструктивные особенности СИЗОД (вопрос № 17 и 18)

Оба типа СИЗОД - как фильтрующие респираторы и противогазы, так и изолирующие дыхательные аппараты, состоят из двух основных конструктивных частей: устройства, обеспечивающего очистку вдыхаемого воздуха (фильтр) или подачу чистого воздуха или кислорода из незагрязненного источника, и лицевой части, которая проводит чистый воздух в органы дыхания.

В фильтрующих СИЗОД обе эти части могут составлять единую конструкцию (фильтрующие полумаски) или быть в виде полумасок, масок или шлем-масок с присоединенными фильтрующими элементами - патронами или коробками различных габаритов (патронные СИЗОД).

Фильтрующие элементы в зависимости от конструкции бывают в виде плоских или гофрированных волокнистых фильтров, укрепляемых на полумасках в виде каркасных конструкций или располагаемых в патронах или коробках, которые присоединяются к лицевой части непосредственно или с помощью гофрированного шланга. В последние годы появились конструкции фильтрующих СИЗОД, в комплект которых входят микровентилятор с электропитанием от индивидуальных источников электроснабжения (СИЗОД с принудительной фильтрацией).

Изолирующие шланговые СИЗОД по конструктивным особенностям подразделяются на следующие три основные типа:

• самовсасывающие дыхательные аппараты, состоящие из лицевой части в виде шлем-маски или панорамной маски и шланга (длиной не более 9 м), соединяющего органы дыхания с чистой атмосферой. Эти аппараты не имеют в своем составе воздухоподающего устройства;

• с принудительной подачей чистого воздуха от воздуходувки, входящей в комплект данного аппарата, или от специализированной централизованной пневмосистемы. Они состоят из лицевой части в виде полумаски, шлем-маски, маски с панорамным стеклом, шлема или куртки со шлемом и системой распределения воздуха в зоне дыхания и шланга длиной до 20 см для подсоединения к источнику воздухоснабжения;

• с подачей воздуха от компрессорной линии. Они комплектуются лицевыми частями в виде полумасок, панорамных масок или шлемов, оснащенных регуляторами давления и расхода воздуха, шлангами различной длины и фильтрами для очистки компрессорного воздуха. При необходимости могут оснащаться индивидуальными малогабаритными «вихревыми» кондиционерами, обеспечивающими охлаждение или подогрев воздуха, поступающего в органы дыхания.

Вопрос №18. СИЗОД. Респираторы, их виды, особенности применения

Респиратор – это средство индивидуальной защиты органов дыхания. Респираторы являются облегченным средством защиты органов дыхания от вредных газов, паров, аэрозолей и пыли. Основная задача респиратора – это поставка очищенного воздуха, пригодного для человека. Респиратор отлично зарекомендовал себя, как надежное средство защиты органов дыхания, и сейчас трудно представить себе работу в сложных условиях, с повышенным риском для здоровья человека, без использования индивидуальных средств защиты, в том числе и респиратора.

Сфера применения респираторов также обширна, как количество ситуаций, в которых может понадобиться это фильтрующее устройство. Так выделяют индустриальные респираторы, которые используются на производствах. Не менее распространена разновидность военных респираторов. Для медицинской отрасли производятся медицинские респираторы, специализацией которых может быть, например, защита от гриппа или от провокаторов аллергии.

Респираторы, не снабженные клапанами, рассчитаны на нагрузку в виде концентрированной запыленности в среднем до 100 мг/м3. Респираторы, оснащенные фильтрами, могут использоваться для защиты от высокодисперсных аэрозолей, концентрация которых может достигать до 400 мг/м3.

Очистка вдыхаемого воздуха от парогазообразных примесей осуществляется за счет физико-химических процессов (адсорбции, хемосорбции, катализа), а от аэрозольных примесей - путем фильтрации через волокнистые материалы.

Респираторы обладают малым сопротивлением дыханию и малым весом, что является их основными достоинствами. Это продлевает время нахождения в респираторе и уменьшает давление на лицевую часть. Однако запрещается их применение для защиты от высокотоксичных веществ типа синильной кислоты и др., а также от веществ, которые могут проникнуть в организм через неповрежденную кожу. В этом случае необходимо использовать противогаз, например противогаз ГП-7, либо противогаз в комплексе с защитными костюмами, например защитный костюм Л-1.

Респираторы классифицируются по предназначению, устройству, сроку службы и по типу механизма защиты от вредных примесей.

По предназначению Респираторы подразделяются на:

1. Противопылевыереспираторы защищают органы дыхания от аэрозолей различных видов. В качестве фильтров в противопылевых респираторах используют тонковолокнистые фильтровальные материалы. Наибольшее распространение получили полимерные фильтровальные материалы типа ФП (фильтр Петрянова), благодаря их высокой эластичности, механической прочности, большой пылеемкости, а, главное, из-за высоких фильтрующих свойств. К ним относятся: респиратор У2-К, респиратор ШБ-1 "Лепесток-200", респиратор Р-2 и респиратор Р-2У.

2. Противогазовыереспираторы применяется для защиты от паров хлор и фосфорорганических соединений, а также от паров органического происхождения - ацетона, керосина, бензина, спиртов и т. п. Эти же воздействия являются показанием для использования патрона респиратора марки А. Патрон марки В и газопылезащитные респираторы успешно справляются с атаками кислых газов, при использовании патрона марки Г – с парами ртути, с маркой КД с воздействием сероводорода и аммиака. К ним относится респиратор РПГ-67.

3. Газо-пылезащитные респираторы защищают от газов, паров и аэрозолей при одновременном их присутствии в воздухе. Важной отличительной способностью материалов ФП, изготовленных из перхлорвинила и других полимеров, обладающих изоляционными свойствами, является то, что они несут электростатические заряды, которые резко повышают эффективность улавливания аэрозолей и пыли. К ним относится респиратор РУ-60М.

По устройству Респираторы делятся на два типа:

1. К первому относится конструкция в виде полумаски, на лицевой части которой размещают фильтрующий элемент.

Фильтрующая полумаска респиратора бывает разной конструкции. Так выделяют респираторы с полумаской конверторного типа, формованой полумаской неформованой фильтрующей полумаской. Респираторы, которые представляют разновидность фильтрующей полумаски, делят на три класса защиты. К первому классу (FFP 1) относят респираторы с возможностью очистки до 4 ПКД, ко второму (FFP 2) – до 12 ПКД, представителями третьего класса (FFP 3) являются фильтрующие полумаски до 50 ПКД.

2. Второй тип респиратора представляет собой полумаску, которая снабжается дыхательными клапанами и фильтрующей конструкцией, сорбенты и фильтры который периодически меняются.

В зависимости от срока службы Респираторы могут быть:

1. Одноразового применения (ШБ-1«Лепесток», У-2К, Р-2, Р-2У), которые после отработки непригодны для дальнейшего использования. Одноразовые респираторы обычно противопылевые.

2. Многоразового использования (респиратор РПГ-67, респиратор РУ-60М) В респираторах многоразового применения предусмотрена замена фильтров. РПГ-67 имеет несколько марок, которые соответствуют марке фильтрующего патрона. В свою очередь патроны различаются по составу поглотителей. В центре крышки патрона нанесена маркировка.

По типу механизма защиты Респираторы бывают:

1. Фильтрующие, в которых воздух проходит через специальный слой – фильтр, очищаясь от вредных примесей. Фильтры бывают разными и различаются по эффективности при определенном размере частиц загрязнителя. В инструкции к респиратору обязательно указывается, какой минимальный размер частиц им улавливается, а также на работу в каких условиях рассчитан респиратор. Например, при взаимодействии с красками, лаками и эмалями следует пользоваться фильтрами, предназначенными для защиты от паров краски. Для предохранения органов дыхания от дымов или пыли, выхлопных газов – другими, специальными.

2.С подачей воздуха, он подается либо от индивидуального (автономного) баллона, либо от специального патрона, где воздух производится за счет химической реакции. Их защитные свойства дополнительно усиливаются за счет создания небольшого подпора воздуха под маской. Такие аппараты применяются в случае необходимости выхода или входа в зону опасного загрязнения.

Существуют еще и комбинированные модели респираторов, которые могут работать как в режиме фильтрации, так и в режиме использования подачи воздуха.

Вопрос №19. Токсические вещества, отравления

Вредное вещество (промышленный яд), попадая в организм человека во время его профессиональной деятельности, вызывает патологические изменения.

Основными источниками загрязнения воздуха производственных помещений вредными веществами могут являться сырье, компоненты и готовая продукция. Заболевания, возникающие при воздействии этих веществ, называют профессиональнымиотравлениями.

По степени воздействия на организм вредные вещества подразделяются на четыре класса опасности:

1-й - вещества чрезвычайно опасные;

2-й - вещества высокоопасные;

3-й - вещества умеренно опасные;

4-й - вещества малоопасные.

Токсические вещества в организме распределяются неодинаково, причем некоторые из них способны к накоплению в определенных тканях.

Здесь особо можно выделить электролиты, многие из которых весьма быстро исчезают из крови и сосредоточиваются в отдельных органах. Свинец накапливается в основном в костях, марганец - в печени, ртуть - в почках и толстой кишке. Естественно, что особенность распределения ядов может в какой-то мере отражаться и на их дальнейшей судьбе в организме.

Вступая в круг сложных и многообразных жизненных процессов, токсические вещества подвергаются разнообразным превращениям в ходе реакций окисления, восстановления и гидролитического расщепления. Общая направленность этих превращений характеризуется наиболее часто образованием менее ядовитых соединений, хотя в отдельных случаях могут получаться и более токсические продукты (например, формальдегид при окислении метилового спирта).

Выделение токсических веществ из организма нередко происходит тем же путем, что и поступление. Нереагирующие пары и газы частично или полностью удаляются через легкие. Значительное количество ядов и продукты их превращения выделяются через почки. Определенную роль для выделения ядов из организма играют кожные покровы, причем этот процесс в основном совершают сальные и потовые железы.

Необходимо иметь в виду, что выделение некоторых токсических веществ возможно в составе женского молока (свинец, ртуть, алкоголь). Это создает опасность отравления грудных детей. Поэтому беременных женщин и кормящих матерей следует временно отстранять от производственных операций, выделяющих токсические вещества.

Токсическое действие отдельных вредных веществ может проявляться в виде вторичных поражений, например, колиты при мышьяковых и ртутных отравлениях, стоматиты при отравлениях свинцом и ртутью и т. д.

Опасность вредных веществ для человека во многом определяется их химической структурой и физико-химическими свойствами. Немаловажное значение в отношении токсического воздействия имеет дисперсность проникающего в организм химического вещества, причем, чем выше дисперсность, тем токсичнее вещество.

Условия среды могут либо усиливать, либо ослаблять его действие. Так, при высокой температуре воздуха опасность отравления повышается; отравления амидо- и нитросоединением бензола, например, летом бывают чаще, чем зимой. Высокая температура влияет и на летучесть газа, скорость испарения и т. д. Установлено, что влажность воздуха усиливает токсичность некоторых ядов (соляная кислота, фтористый водород).

По характеру развития и длительности течения различают две основные формы профессиональных отравлений - острые и хроническиеинтоксикации.

Острая интоксикация наступает, как правило, внезапно после кратковременного воздействия относительно высоких концентраций яда и выражается более или менее бурными и специфическими клиническими симптомами. В производственных условиях острые отравления чаще всего связаны с авариями, неисправностью аппаратуры или с введением в технологию новых материалов с малоизученной токсичностью.

Хронические интоксикации вызваны поступлением в организм незначительных количеств яда и связаны с развитием патологических явлений только при условии длительного воздействия, иногда определяющегося несколькими годами.

Большинство промышленных ядов вызывают как острые, так и хронические отравления. Однако некоторые токсические вещества обычно обусловливают развитие преимущественно второй (хронической) фазы отравлений (свинец, ртуть, марганец).

Помимо специфических отравлений токсическое действие вредных химических веществ может способствовать общему ослаблению организма, в частности снижению сопротивляемости к инфекционному началу. Например, известна зависимость между развитием гриппа, ангины, пневмонии и наличием в организме таких токсических веществ, как свинец, сероводород, бензол и др. Отравление раздражающими газами может резко обострить латентный туберкулез и т. д.

Развитие отравления и степень воздействия яда зависят от особенностей физиологического состояния организма. Физическое напряжение, сопровождающее трудовую деятельность, неизбежно повышает минутный объем сердца и дыхания, вызывает определенные сдвиги в обмене веществ и увеличивает потребность в кислороде, что сдерживает развитие интоксикации.

Чувствительность к ядам в определенной мере зависит от пола и возраста работающих. Установлено, что некоторые физиологические состояния у женщин могут повышать чувствительность их организма к влиянию ряда ядов (бензол, свинец, ртуть). Бесспорна плохая сопротивляемость женской кожи к воздействию раздражающих веществ, а также большая проницаемость в кожу жирорастворимых токсических соединений. Что касается подростков, то их формирующийся организм обладает меньшей сопротивляемостью к влиянию почти всех вредных факторов производственной среды, в том числе и промышленных ядов.

Вопрос №20. Классификация токсических веществ

Токсикологическая классификация основана на разделении химических веществ по характеру их токсического действия на организм. Классификация летучих токсических веществ по их свойствам и биологическому эффекту разработана Гендерсоном и Хоггардом (1930) и включает четыре группы.

I. Удушающие:

1) простые удушающие, действие которых сказывается в вытеснении кислорода из вдыхаемого воздуха (азот, водород, гелий);

2) химически действующие, нарушающие газообмен в крови и тканях (оксид углерода, синильная кислота).

II. Раздражающие. Вызывают раздражение слизистых оболочек дыхательных путей, легких, ведущее к развитию воспалительных реакций.

III. Летучие наркотики и родственные им вещества, действующие после поступления в кровь. Оказывают острое действие на нервную систему, вызывая наркоз. Делятся на пять подгрупп:

1) наркотические вещества, не обладающие ясно выраженным последействием (оксид азота II, эфиры, углеводороды жирного ряда);

2) вещества, оказывающие вредное действие главным образом на внутренние органы (галогенпроизводные углеводороды жирного ряда);

3) вещества, обладающие действием главным образом на кроветворную систему (ароматические углеводороды);

4) органические соединения азота, действующие преимущественно на кровь и кровообращение (анилин, нитробензол);

5) вещества, обладающие действием преимущественно на нервную систему (алкоголи, сернистые соединения жирного ряда).

IV. Неорганические и металлоорганические соединения (ртуть, свинец, фосфор, фторид водорода и др.).

Вопрос №21. Контроль содержания вредных веществ в воздухе рабочей зоны

Контроль за содержанием вредных веществ в воздухе рабочей зоны проводится в соответствии с требованиями ГОСТ 12.1.005 - 88. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

Содержание вредных веществ в воздухе рабочей зоны подлежит систематическому контролю для предупреждения возможности превышения предельно допустимых:

· максимально разовой ПДК;

· среднесменной ПДК (при наличии соответствующего норматива).

Отбор проб воздуха должен проводиться в зоне дыхания при характерных производственных условиях.

Для каждого производственного участка должны быть определены вещества, которые могут выделяться в воздух рабочей зоны. При наличии в воздухе нескольких вредных веществ контроль воздушной зоны допускается проводить по наиболее опасным и характерным веществам, устанавливаемым органами государственного санитарного надзора.

Контроль соблюдения максимально разовой ПДК проводится на наиболее характерных рабочих местах. При наличии идентичного оборудования или выполнении одинаковых операций контроль проводится выборочно на отдельных рабочих местах, расположенных в центре и по периферии помещения.

Содержание вредного вещества в данной конкретной точке характеризуется следующим суммарным временем отбора: для токсических веществ - 15 минут, для веществ преимущественно фиброгенного действия - 30 минут. За указанный период времени может быть отобрана одна или несколько последовательных проб через равные промежутки времени. Результаты, полученные при однократном отборе или при усреднении последовательно отобранных проб, сравнивают с величинами максимальных разовых ПДК. В течение смены и (или) на отдельных этапах технологического процесса в одной точке должно быть последовательно отобрано не менее трех проб. Для аэрозолей преимущественно фиброгенного действия допускается отбор одной пробы.

При возможном поступлении в воздух рабочей зоны вредных веществ с остронаправленным механизмом действия должен быть обеспечен непрерывный контроль с сигнализацией о превышении ПДК. В остальных случаях контроль проводится периодически. Его периодичность устанавливается в зависимости от класса опасности вредного вещества: для I класса - не реже 1 раза в10 дней, II класса - не реже 1 раза в месяц, III и IV классов - не реже 1 раза в квартал.

В зависимости от конкретных условий производства периодичность контроля может быть изменена по согласованию с органами государственного санитарного надзора. При установленном соответствии содержания вредных веществ III, IV классов опасности уровню ПДК допускается проводить контроль не реже 1 раза в год.

Для контроля концентрации вредных веществ в воздухе рабочей зоны (рабочих мест) используют экспресс-методы; лабораторные методы; методы непрерывного контроля.

Экспресс-метод нашел наиболее широкое применение и позволяет быстро и с достаточной точностью определять концентрацию вредных веществ, непосредственно, на рабочем месте. Суть его заключается в протягивании определенного объема воздуха через контрольные трубки с индикаторным порошком, который реагирует изменением цвета на содержание вредных веществ в воздухе. К приборам экспресс-метода относятся газоанализаторы: УГ-2; ГХ-100; ГХ-4 и др. (рис. 2.3.1., 2.3.2).

Лабораторный метод является более точным, но требует отбора проб воздуха в рабочей зоне с последующим анализом его состава в лабораторных условиях в течение ближайшего времени. К таким методам относятся: хроматорафический, фотокалорометрический и др.

Метод непрерывного автоматического контроля применяется на рабочих местах с постоянным воздействием вредных веществ, которые могут вызвать серьезные нарушения в состоянии здоровья людей или привести к авариям за счет возникновения взрывоопасности и пожароопасности. Контроль проводится автоматизированными системами с записью изменений вредностей в воздухе во времени с применением газоанализаторов: Сирена-2 для аммиака, Фотон для сероводорода, ФКГ-3М для хлора и др.

При определении концентрации вредных веществ в воздухе результаты должны приводится к нормальным условиям: температура 200С, атмосферное давление 760 мм ртутного столба, относительная влажность 50%.

Для анализа проб воздуха строителям при ведении работ в колодцах, емкостях, отделочных работах очень удобен газоанализатор ГХ-100. Этот компактный прибор прост в конструктивном решении, в применении не требует особых условий его хранения. В приложении 10, СНиП 111-4-80* приведен перечень приборов для определения содержания газов в воздухе строительного производства.

Контроль соблюдения среднесменной ПДК проводится приборами индивидуального контроля либо по результатам отдельных измерений. В последнем случае ее рассчитывают как величину, средневзвешенную во времени, с учетом пребывания работающего на всех стадиях и операциях технологического процесса. Обследование осуществляется на протяжении не менее чем 75% продолжительности смены в течение не менее 3 смен. Периодичность контроля за соблюдением среднесменной ПДК должна быть не реже кратности проведения периодических медицинских осмотров, установленной Минздравом РФ.

Вопрос №22. Пути проникновения вредных веществ в организм человека. Меры защиты

Токсические вещества поступают в организм человека через дыхательные пути (ингаляционное проникновение), желудочно-кишечный тракт и кожу. Степень отравления зависит от их агрегатного состояния (газообразные и парообразные вещества, жидкие и твердые аэрозоли) и от характера технологического процесса (нагрев вещества, измельчение и др.).

Преобладающее большинство профессиональных отравлений связано с ингаляционным проникновением в организм вредных веществ, являющимся наиболее опасным, так как большая всасывающая поверхность легочных альвеол, усиленно омываемых кровью, обусловливает очень быстрое и почти беспрепятственное проникновение ядов к важнейшим жизненным центрам.

Поступление токсических веществ через желудочно-кишечный тракт в производственных условиях наблюдается довольно редко. Это бывает из-за нарушения правил личной гигиены, частичного заглатывания паров и пыли, проникающих через дыхательные пути, и несоблюдения правил техники безопасности при работе в химических лабораториях. Следует отметить, что в этом случае яд попадает через систему воротной вены в печень, где превращается в менее токсические соединения.

Вещества, хорошо растворимые в жирах и липоидах, могут проникать в кровь через неповрежденную кожу. Сильное отравление вызывают вещества, обладающие повышенной токсичностью, малой летучестью, быстрой растворимостью в крови. К таким веществам можно отнести, например, нитро- и аминопродукты ароматических углеводородов, тетраэтилсвинец, метиловый спирт и др.

Вопрос №23. Профилактика профессиональных заболеваний

Мероприятия по профилактике профессиональных отравлений включают гигиеническую рационализацию технологического процесса, его механизацию и герметизацию.

Эффективным средством является замена ядовитых веществ безвредными или менее токсичными. Важное значение в оздоровлении условий труда имеет гигиеническое нормирование, ограничивающее содержание вредных веществ путем установления ПДК в воздухе рабочей зоны и на коже. С этой целью проводится гигиеническая стандартизация сырья и продуктов, предусматривающая ограничение содержания токсических примесей в промышленном сырье и готовых продуктах с учетом их вредности и опасности.

Большая роль в предупреждении профессиональных 1 интоксикаций принадлежит механизации производственного процесса, дающей возможность проведения его в замкнутой аппаратуре и сводящей до минимума необходимость соприкосновения рабочего с токсическими веществами (механическая загрузка и выгрузка удобрений, стиральных и моющих средств). Аналогичные задачи решаются при герметизации производственного оборудования и помещений, выделяющих ядовитые газы, пары и пыль. Надежным средством борьбы с загрязнением воздуха служит создание некоторого вакуума, предотвращающего выделение токсических веществ через имеющиеся неплотности.

К санитарно-техническим мероприятиям относится вентиляция рабочих помещений. Операции с особо токсическими веществами должны проводиться в специальных вытяжных шкафах с мощным отсосом или в замкнутой аппаратуре.

В производствах, наиболее опасных в плане возникновения профессиональных отравлений, применяют индивидуальные средства защиты (спецодежда, респираторы, противогазы и др.). Кроме того, большое значение имеет соблюдение правил личной гигиены, для этого на предприятиях имеются душевые комнаты, гардеробные помещения для раздельного хранения спецодежды и личной одежды, прачечные для стирки спецодежды, устройства для обеспыливания спецодежды и др.

Иногда причиной тяжелых острых и даже смертельных отравлений является неосведомленность персонала об опасности производственного процесса и основных мерах профилактики, поэтому необходимо проводить санитарный инструктаж и обучение рабочих безопасным методам работы.

Для контроля за чистотой воздушной среды в производственных помещениях служат показатели ПДК вредных веществ, предусмотренные санитарным законодательством.

Число профессиональных отравлений является одним из важнейших показателей оценки санитарно-гигиенических условий труда и медико-санитарного обслуживания рабочих. Необходимо подчеркнуть большое значение периодических медицинских осмотров в системе профилактических мероприятий и их роль в выявлении ранних и, следовательно, легко излечимых стадий профессиональных отравлений.

Вопрос №24,25,26. СИЗ от токсических веществ в воздухе рабочей зоны

В системе мероприятий по охране труда большое значение имеет обеспечение работающих средствами индивидуальной защиты (СИЗ) от проникновения в организм человека вредных и опасных химических веществ, пероральным (через рот и органы пищеварения) путем и через кожу, а так же защиты кожных покровов и глаз от вредного воздействия.

При наличии в воздухе вредных веществ в количестве, превышающем ПДК, а также при вероятности их появления в ходе производственных процессов в результате неисправностей оборудования и аварий необходимо пользоваться СИЗ органов дыхания, а в случае наличия веществ, действующих через кожу, также СИЗ кожи.

СИЗ органов дыхания подразделяются на два основных класса: фильтрующие и изолирующие.

В фильтрующих устройствах вдыхаемый человеком загрязненный воздух предварительно фильтруется, а в изолирующих – чистый воздух подается по специальным шлангам к органам дыхания человека от автономных источников или после регенерации. Фильтрующими приборами (респираторами и противогазами) пользуются при невысокой концентрации вредных веществ в воздухе рабочей зоны (не более 0,5% по объему) и при содержании кислорода в воздухе не менее 18%.

Фильтрующие СИЗ наиболее просты, надежны и не ограничивают работающему свободу передвижения. К фильтрующим СИЗ относятся: респираторы, противогазы, фильтрующие самоспасатели.

Выбор СИЗ фильтрующего действия в значительной степени зависит от условий, в которых они должны эксплуатироваться, агрегатного состояния вредных веществ в воздухе, их концентрации.

Вредные вещества могут присутствовать в воздухе в парогазообразном состоянии и виде аэрозолей - пыли, дыма и тумана.

Респираторы могут быть разнообразных видов в зависимости от состава вредных веществ, их концентрации и требуемой степени защиты.

Наиболее широкое распространение получили противопылевые респираторы. Противопылевые респираторы не защищают органы дыхания от газов, паров и легковоспламеняющихся веществ.

При необходимости защиты органов дыхания от вредных газов и паров применяются респираторы, состоящие из резиновой полумаски и поглощающих газы патронов и предназначенные для защиты от вредных веществ при концентрациях, не превышающих 10…15 ПДК.

Промышленные противогазыпредназначены для защиты органов дыхания, лицаи глаз от вредных веществ, присутствующих в воздухе. В зависимости от применяемых коробок противогаз может защищать от газов (паров) вредных веществ (с поглощающими коробками), от аэрозолей вредных веществ (с фильтрующими коробками) и одновременно от газов (паров) и аэрозолей вредных веществ (с фильтрующе-поглощающими коробками).

Действие изолирующих противогазов и самоспасателей основано на использовании химически связанного кислорода. Они имеют замкнутую маятниковую схему дыхания: выдыхаемый человеком воздух попадает в регенеративный патрон, в котором поглощаются выделенный человеком углекислый газ и пары воды, а взамен выделяется кислород. Затем дыхательная смесь попадает в дыхательный мешок. При вдохе газовая смесь из дыхательного мешка снова проходит через регенеративный патрон, дополнительно очищает и поступает для дыхания.

Изолирующие противогазы обеспечивают более длительное время работы в них, чем изолирующие самоспасатели, более комфортные условия работы, являются средствами многократного применения при условии замены регенеративного патрона после каждого использования противогаза.

Отличительной особенностью изолирующих самоспасателей является то, что уже в заводской упаковке они полностью готовы к применению. Для включения самоспасателя с целью обеспечения защиты необходимо несколько секунд. Поэтому они применяются в случаях аварий и непредусмотренных технологическим процессом выделениях (выбросах) вредных веществ.

При выделении вредных веществ, которые могут проникать (заражать) человека через кожные покровы, применяются изолирующие комплекты. Такие комплекты состоят из комбинезона с капюшоном, рукавиц, осоюзки и снабжаются дыхательным аппаратом.

Вопрос №27. Вибрация как производственная вредность

Вибрация как производственная вредность представляет собой механические колебательные движения, непосредственно передаваемые телу человека или отдельным его участкам.

Основными параметрами вибрации являются частота и амплитуда колебаний, но в отличие от шума, при котором энергия механических колебаний передается через воздушную среду, при воздействии вибрации она распространяется по тканям и вызывает их колебания или частей тела в целом. Частота колебаний измеряется в герцах, амплитуда - в миллиметрах. В отношении опасности вибрационной болезни наибольшее значение имеет вибрация с частотой 16 – 250 Гц.

Различают местную (локальную) и общую вибрацию. Местная вибрация распространяется по тканям, особенно хорошо по костной и хрящевой, которые частично поглощают и гасят энергию колебаний.

Общую вибрацию по источнику ее возникновения подразделяют на следующие виды: транспортная (автомобили); транспортно-технологическая (экскаваторы, краны); технологическая (виброплощадки). Общая вибрация передается телу через сиденье и пол.

Вибрация в зависимости от ее параметров (частота, амплитуда) может оказывать как положительное, так и отрицательное влияние на отдельные ткани, и организм в целом.

Местная вибрация малой интенсивности может оказывать благоприятное воздействие на организм человека: улучшить функциональные изменения ЦНС, восстановить трофические изменения и т.п.

При увеличении интенсивности колебаний и длительности их воздействия возникают изменения, приводящие в ряде случаев к развитию профессиональной патологии – вибрационной болезни.

При воздействии общей вибрации более выражены изменения со стороны ЦНС: головокружение, шум в ушах, сонливость, отсутствие аппетита, тошнота боли в кистях и предплечье, судороги, эмоциональная неустойчивость. Может наблюдаться тремор рук, языка и век. Также могут наблюдаться вестибулярные расстройства. Все это признаки вибрационной болезни.

Низкочастотная общая вибрация вызывает длительную травматизацию межпозвонковых дисков, изменение моторики желудочно-кишечного тракта, возникновение и прогрессирование дегенеративных изменений позвоночника, возникают патологические изменения сердечно-сосудистой системы, костных тканей и суставов, изменяется капиллярное кровообращение.

Первые проявления действия вибрации на организм, особенно на ЦНС, наблюдаются по истечении 4 – 12 месяцев от начала работы, но могут возникать и позже – через два года, и реже – через три – пять лет работы.

Из организационных мероприятий по профилактике вибрационной болезни нужно отметить внедрение рационального режима труда и отдыха. Вводятся регламентированные перерывы в течение 10-15 минут после 45-60 минут работы.

Вопрос №28. Производственный шум как профессиональная вредность

Производственный шум – это совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения.

С физической точки зрения шум представляет собой распространяющиеся механические колебательные движения в слышимом диапазоне частот. Механические колебания характеризуются амплитудой частот. Единица измерения частоты - герц (Гц) – одно колебание в секунду. По частотной характеристике различают шумы: низкочастотные – до 350 Гц, среднечастотные – до 350-380 Гц и высокочастотные – выше 800 Гц [1].

Для характеристики интенсивности звуков или шума принята измерительная система, учитывающая логарифмическую зависимость между раздражением и слуховым восприятием – шкала логарифмических единиц, в которой каждая последующая ступень звуковой энергии больше предыдущей в 10 раз. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности звука над уровнем другого, называется белом (Б). За исходную цифру (0 бел) принята пороговая для слуха величина звуковой энергии. При возрастании ее в 10 раз звук воспринимается как вдвое более громкий, и интенсивность его составляет 1Б. Весь диапазон энергии, воспринимаемый слухом как звук укладывается в 13-14 Б. Для удобства пользуются не белом, а единицей в 10 раз меньшей – децибелом (дБ), которая соответствует примерно минимальному приросту силы звука, различаемому ухом.

Наиболее распространенными приборами, служащими для измерения шума, являются шумомеры. В шумомере звук преобразуется с помощью микрофона в электрические колебания, увеличивающиеся с помощью усилителя.

Действие шума на слух вызывает развитие тугоухости, а иногда и полной глухоты. Чаще изменения слуха развиваются в течение трех-пяти лет и более. Рабочие обращаются с жалобами на трудность восприятия шепотной речи, плохую слышимость высокого голоса. Некоторые люди с трудом засыпают из-за звона в ушах.

Патогенез профессиональной тугоухости связан с процессом утомления и переутомления слухового аппарата.

Помимо действия шума на органы слуха установлено его повреждающее влияние на другие органы и системы организма, в первую очередь на центральную нервную систему (ЦНС), функциональные изменения в которой происходят зачастую раньше, чем определяется нарушение слуховой чувствительности. Это выражается астеническими реакциями, вегетативной дисфункцией с характерными симптомами – раздражительностью, ослаблением памяти, подавленным настроением, повышенной потливостью.

При большом стаже работы или у особо чувствительных лиц может развиться тремор век и пальцев рук.

Неблагоприятное влияние шума на нервную систему, функциональное состояние двигательного аппарата и анализаторов выражается также в следующем: нарушение концентрации внимания, точности в координации движений, ухудшение восприятий звуковых и световых сигналов, быстро развивается чувство усталости.

Для определения допустимого уровня шума на рабочих местах, в жилых помещениях, общественных зданиях и территории жилой застройки используется ГОСТ 12.1.003-83. ССБТ «Шум. Общие требования безопасности», СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Нормируемыми параметрами общей вибрации явля­ются среднеквадратичные значения колебательной скоро­сти в октавных полосах частот или амплитуды перемеще­ний, возбуждаемые работой оборудования и передава­емые на рабочие места в производственных помещениях (пол, рабочие площадки, сиденья).

Вибрация, воздействующая на человека, нормирует­ся отдельно в каждой стандартной октавной полосе, раз­лично для общей и локальной вибраций.

Нормирование шума звукового диапазона осуществляется двумя методами: по предельному спектру уровня шума и по дБА. Первый метод устанавливает предельно допустимые уровни (ПДУ) в девяти октавных полосах со среднегеометрическими значениями частот 63, 125, 250, 500, 1000, 2000, 4000, 8000 ГЦ. Второй метод применяется для нормирования непостоянных шумов и в тех случаях, когда не известен спектр реального шума. Нормируемым показателем в этом случае является эквивалентный уровень звука широкополосного постоянного шума, оказывающий на человека такое же влияние, как и реальный непостоянный шум, измеряемый по шкале А шумомера.

Нужно упомянуть, что запрещается даже кратковременное пребывание в зонах с уровнем звукового давления свыше 135 дБ.

На предприятии для снижения шума вентиляционных установок применяют кожухи. Кожухи должны полностью закрывать оборудование (как это позволяет технологический процесс и условия эксплуатации оборудования), должны быть съемными или разборными. На внутренних поверхностях кожухов следует предусматривать облицовку из звукопоглощающего материала. Минимальное снижение звукового давления данных звукопоглощающих конструкций – до 11 дБ.

Кроме того, для уменьшения влияния шума используют защиту временем, предусматривая периодический отдых от шума в рамках одной профессии, возможность заниматься работой, не связанной с сильным шумом.

Вопрос №29. Меры защиты от воздействия вибрации

Общие методы борьбы с вибрацией базируются на анализе уравнений, которые описывают колебание машин в производственных условиях и классифицируются следующим образом:

1. Снижение вибрации в источнике ее возникновения достигается путем уменьшения силы, которая вызывает колебание. Поэтому еще на стадии проектирования машин и механических устройств следует выбирать кинематические схемы, в которых динамические процессы, вызванные ударами и ускорением, были бы исключены или снижены.

2. Регулировка режима резонанса. Для ослабления вибраций существенное значение имеет предотвращение резонансных режимов работы с целью исключения резонанса с частотой принуждающей силы. Собственные частоты отдельных конструктивных элементов определяют расчетным методом по известным значениям массы и жесткости или же экспериментально на стендах.

3. Вибродемпферование. Этот метод снижения вибрации реализуется путем превращения энергии механических колебаний колебательной системы в тепловую энергию. Увеличение расхода энергии в системе осуществляется за счет использования конструктивных материалов с большим внутренним трением: пластмасс, металлорезины, сплавов марганца и меди, никелетитанових сплавов, нанесения на вибрирующие поверхности слоя упруговязких материалов, которые имеют большие, потери на внутреннее трение. Наибольший эффект при использовании вибродемпферных покрытий достигается в области резонансных частот, поскольку при резонансе значение влияния сил трения на уменьшение амплитуды возрастает.

4. Виброгашение, Для динамического гашения колебаний используются динамические виброгасители: пружинные, маятниковые, эксцентриковые гидравлические. Недостатком динамического гасителя является то, что он действует только при определенной частоте, которая отвечает его резонансному режиму колебаний.

Динамическое виброгашение достигается также установлением агрегата на массивном фундаменте.

5. Виброизоляция состоит в снижении передачи колебаний от источника возбуждения к объекту, который защищается, путем введения в колебательную систему дополнительной упругой связи. Эта связь предотвращает передачу энергии от колеблющегося агрегата к основе или от колебательной основы к человеку или к конструкциям, которые защищаются.

6. Средства индивидуальной зашиты от вибрации применяют в случае, когда рассмотренные выше технические средства не позволяют снизить уровень вибрации до нормы. Для защиты рук используются рукавицы, вкладыши, прокладки. Для защиты ног — специальная обувь, подметки, наколенники. Для защиты тела — нагрудники, пояса, специальные костюмы.

Вопрос №30. ИСЗ и организацион. мероприятия по предупреждению виброболезни.

При работе с ручным инструментом (электрическим, пневматическим) применяют средства индивидуальной защиты рук от воздействия вибраций (рукавицы, пер­чатки). Учитывая неблагоприятное воздействие холода на развитие виброболезни, при работе в зимнее время ра­бочих надо обеспечивать теплыми рукавицами. Приме­няют также антивибрационные пояса, подушки, про­кладки, виброгасящие коврики, виброгасящую обувь.

В целях профилактики виброболезни для работа­ющих с вибрирующим оборудованием рекомендуется специальный режим труда. Так, суммарное время в кон­такте с вибрацией не должно превышать 2/3 рабочей сме­ны. При таком режиме труда рекомендуется устанавли­вать обеденный перерыв не менее 40 мин и два регламен­тированных перерыва (20 мин через 1—2 ч после начала смены и 30 мин через 2ч после обеденного перерыва). При работе с вибрирующим оборудованием рекомендует­ся включать в рабочий цикл технологические операции, не связанные с воздействием вибрации. Рабочие, у ко­торых обнаружена виброболезнь, временно, до решения ВТЭК, должны быть переведены на работу, не связанную с вибрацией, значительным мышечным напряжением и охлаждением рук. Руки следует беречь от холода. По­лезны теплые ванночки для рук. Рекомендуется устрой­ство помещений для гидропроцедур.

Вопрос №31. Условия поражения человека электрическим током

Человек попадает под воздействие электрического тока при случайном прикосновении к токоведущим частям электроустановки или приближении на недопустимо близкое расстояние, при возникновении в электроустановке аварийного режима; при несоответствии параметров электроустановки нормам, а также при нарушении правил техники безопасности и эксплуатации электроустановок.

Известны статистические данные о причинах попадания людей под напряжение (табл.1)

Таблица 1

 
Причина поражения % от всех электротравм
Прикосновение к открытым токоведущим частям, находящимся под напряжением  
Прикосновение к проводящим частям оборудования, оказавшимся под напряжением в результате повреждения изоляции  
Прикосновение к токоведущим частям, покрытым изоляцией, потерявшей свои свойства; касание токоведущих частей предметами с низким электрическим сопротивлением  
Соприкосновение с полами, стенами, элементами конструкций, грунтом, оказавшимися под напряжением вследствие аварийного замыкания на землю  
Поражение через электрическую дугу  
   

При рассмотрении условий возникновения электрической цепи через тело человека различают прямой контакт человека с токоведущими частями и косвенный. Прямой контакт возникает, как правило, в результате нарушения правил техники безопасности и эксплуатации электроустановок, а косвенный - при пробое изоляции на корпус оборудования.

Замыкание на корпус - случайное электрическое соединение токоведущей части с металлическими нетоковедущими частями электроустановки. Замыкание на землю - случайное электрическое соединение токоведущей части с землёй или нетоковедущими проводящими конструкциями или предметами, не изолированными от земли.

Ток через тело человека проходит в том случае, когда человек одновременно касается двух точек, между которыми существует напряжение. Величина поражающего тока зависит от того, каких частей электроустановки касается человек, то есть от условий поражения.

Могут наблюдаться следующие условия поражения:

· Двухполюсное прикосновение к токоведущим частям. При двухполюсном прикосновении к токоведущим частям человек одновременно касается частями тела (например, руками) токоведущих частей оборудования.

· Однополюсное прикосновение к токоведущим частям. Цепь тока через тело человека в сети с изолированной нейтралью (то есть с нейтралью, не присоединённой к заземляющему устройству или присоединённой через аппараты, имеющие большое сопротивление) замыкается через землю и проводимости, существующие между фазами сети и землёй. В сети с заземлённой нейтралью (то есть с нейтралью, присоединённой к заземляющему устройству непосредственно или через малое сопротивление) ток замыкается через человека, землю и заземление нейтрали. Таким образом, при однополюсном прикосновении одна из точек касания - точка грунта (земли).

· Прикосновение к заземлённым нетоковедущим частям, оказавшимся под напряжением. Под нетоковедущими частями понимают металлические части, формально не находящиеся под напряжением. Они могут оказаться под напряжением лишь случайно, в результате повреждения изоляции электроустановки, например, при повреждении корпуса оборудования, оболочки кабелей и т.п. При прикосновении к заземлённому оборудованию, оказавшемуся под напряжением, человек находится в зоне растекания тока, то есть в зоне, каждая точка которой имеет определённый электрический потенциал, обусловленный протеканием через заземлитель тока замыкания на землю.

· Напряжение прикосновения. Во всех случаях поражения человека током напряжение приложено ко всей цепи человека, куда входят сопротивления: тела, обуви, пола или грунта, на котором стоит человек, и т.д. Та часть напряжения, которая приходится в этой цепи на тело человека, называется напряжением прикосновения. Это напряжение между двумя точками цепи тока, которых одновременно касается человек.

· Воздействие напряжения шага. Если человек находится вблизи заземлителя, с которого в землю стекает ток или вблизи места случайного замыкания на землю, то часть этого тока может ответвляться и проходить через ноги человека. Разность потенциалов между ступнями ног на расстоянии шага в зоне растекания тока называется шаговым напряжением. Напряжение шага определяется как напряжение между двумя точками грунта в зоне растекания тока, находящимися одна от другой на расстоянии шага, на которые одновременно опираются ступни шагающего человека. Шаговое напряжение тем больше, чем ближе к заземлителю находится человек и чем больше длина его шага. Отсюда очевидны меры по предупреждению поражения шаговым напряжением - исключение возможности пребывания людей в зоне растекания тока и удаление человека из зоны, в которой возник опасный потенциал, маленькими шагами.

Вопрос №32. Последствия поражения человека электрическим током.

Проходя через организм, электрический ток производит 3 вида воздействия: термическое, электролитическое и биологическое.

Термическое действие проявляется в ожогах наружных и внутренних участков тела, нагреве кровеносных сосудов и крови и т.п., что вызывает в них серьёзные функциональные расстройства.

Электролитическое - в разложении крови и другой органической жидкости, вызывая тем самым значительные нарушения их физико-химических составов и ткани в целом.

Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и лёгких. При этом могут возникнуть различные нарушения в организме, включая механическое повреждение тканей, а также нарушение и даже полное прекращение деятельности органов дыхания и кровообращения.

Различают два основных вида поражения организма: электрические травмы и электрические удары. Часто оба вида поражения сопутствуют друг другу. Тем не менее, они различны и должны рассматриваться раздельно.

Электрические травмы - это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей.

Опасность электрических травм и сложность их лечения обуславливаются характером и степенью повреждения тканей, а также реакцией организма на это повреждение.

Обычно травмы излечиваются и работоспособность пострадавшего восстанавливается полностью или частично. Иногда (обычно при тяжёлых ожогах) человек погибает. В таких случаях непосредственной причиной смерти является не электрический ток, а местное повреждение организма, вызванное током. Характерные виды электрических травм - электрические ожоги, электрические знаки, металлизация кожи и механические повреждения.

Электрический ожог - самая распространённая электрическая травма: ожоги возникают у большей части пострадавших от электрического тока (60-65 %), причём треть их сопровождается другими травмами - знаками, металлизацией кожи и механическими повреждениями.

Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой чётко очерченные пятна серого или бледно-жёлтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Часто знаки имеют круглую или овальную форму с углублением в центре; размеры знаков 1-5 мм. Поражённый участок кожи затвердевает подобно мозоли. Как правило, электрические знаки безболезненны и лечение их заканчивается благополучно: с течением времени верхний слой кожи сходит и поражённое место приобретает первоначальный цвет, эластичность и чувствительность. Знаки возникают довольно часто - примерно у 20 % пострадавших от тока.

Металлизация кожи - проникновение в кожу мельчайших частичек расплавленного под действием электрической дуги металла. Такое явление встречается при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой и т.п. Поражённый участок кожи имеет шероховатую, жёсткую поверхность. Иногда наблюдается покраснение кожи, вызванное ожогом, за счёт тепла, занесённого в кожу металлом. Пострадавший ощущает на поражённом участке напряжение кожи от присутствия в ней инородного тела, а в некоторых случаях испытывает боль от ожогов.

Обычно с течением времени больная кожа сходит и поражённый участок приобретает нормальный вид. Вместе с тем исчезают и все болезненные ощущения, связанные с этой травмой.

Механические повреждения являются следствием резких, непроизвольных судорожных сокращений мышц под действием тока, проходящего через человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. Эти повреждения являются, как правило, серьёзными травмами, требующими длительного лечения. К счастью они возникают редко - не более чем у 3 % пострадавших от тока.

Электрический удар - это возбуждение живых тканей электрическим током, проходящим через организм, сопровождающееся непроизвольными судорожными сокращениями мышц. В зависимости от исхода отрицательного воздействия тока на организм электрические удары могут быть условно разделены на следующие четыре степени:

1. судорожное сокращение мышц без потери сознания;

1. судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

2. потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

3. клиническая смерть, то есть отсутствие дыхания и кровообращения.

Клиническая (или «мнимая») смерть - переходный период от жизни к смерти, наступающей с момента прекращения деятельности и лёгких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни, он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период жизнь в организме ещё полностью не угасла, ибо ткани его умирают не сразу и не сразу угасают функции различных органов. Эти обстоятельства позволяют восстановить угасающие или только что угасшие функции организма, то есть оживить умирающий организм.

Первыми начинают погибать очень чувствительные к кислородному голоданию клетки головного мозга, с деятельностью которого связаны сознание и мышление. Поэтому длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга; в большинстве случаев она составляет 4-5 мин, а при гибели здорового человека от случайной причины, например, от электрического тока, - 7-8 мин.

Биологическая (или истинная) смерть - необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур; она наступает по истечении периода клинической смерти.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Прекращение сердечной деятельности является следствием воздействия тока на мышцу сердца. Такое воздействие может быть прямым, когда ток протекает непосредственно в области сердца, и рефлекторным, то есть через центральную нервную систему, когда путь тока лежит вне этой области. В обоих случаях может произойти остановка сердца или наступить его фибрилляция, то есть хаотически быстрые и разновременные сокращения волокон (фибрилл) сердечной мышцы, при которых сердце перестаёт работать как насос, в результате чего в организме прекращается кровообращение.

Прекращение дыхания как первопричина смерти от электрического тока вызывается непосредственным или рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания. Человек начинает испытывать затруднения дыхания уже при токе 20-25 мА (50 Гц), усиливающееся с ростом тока. При длительном действии тока может наступить асфиксия - удушье в результате недостатка кислорода и избытка углекислоты в организме.

Электрический шок - своеобразная тяжёлая нервно-рефлекторная реакция организма в ответ на сильное раздражение электрическим током, сопровождающаяся опасными расстройствами кровообращения, дыхания, обмена веществ и т.п. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель организма в результате полного угасания жизненно важных функций или полное выздоровление как результат своевременного активного лечебного вмешательства.

Вопрос №33. Факторы, определяющие тяжесть поражения человека электрическим током.

Величина электрического тока, проходящего через тело человека, является основным фактором, обусловливающим исход поражения. Вместе с тем большое значение имеют длительность воздействия тока, его частота, а также некоторые другие факторы. Сопротивление тела человека и величина приложенного к нему напряжения также влияют на исход поражения, но лишь постольку, поскольку они определяют величину тока, проходящего через человека.

Человек начинает ощущать воздействие проходящего через него тока малой величины: 0,6-1,5 мА при переменном токе с частотой 50 Гц и 5-7 мА при постоянном токе. Этот ток называется порогом ощутимых токов или пороговым ощутимым током. Большие токи вызывают судороги мышц и неприятные болезненные ощущения, которые с ростом тока усиливаются и распространяются на всё большие участки тела. При 10-15 мА боль становиться едва переносимой, а судороги мышц рук оказываются настолько значительными, что человек не в состоянии их преодолеть; в результате он не может разжать руку, в которой зажата токоведущая часть, он не может отбросить от себя провод и т.п., то есть он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней. Такой же эффект производят и токи бульшей величины. Все это токи носят название неотпускающих, а наименьший из них - 10-15 мА при частоте 50 Гц (и 50-80 мА при постоянном токе) называется порогом неотпускающих токов или пороговым неотпускающим током. Ток 25-50 мА при частоте 50 Гц воздействует на мышцы не только рук, но и туловища, в том числе и на мышцы грудной клетки, в результате чего дыхание сильно затрудняется. Длительное воздействие этого тока может вызвать прекращение дыхания, после чего спустя некоторое время наступит смерть от удушья. Ток более 50 мА вплоть до 100 мА при 50 Гц ещё быстрее нарушает работу лёгких и сердца. Однако в этом случае, как и при меньших токах, первыми по времени поражаются лёгкие и затем - сердце.

Переменный ток от 100 мА до 5 А при частоте 50 Гц и постоянный от 300 мА до 5 А действуют непосредственно на мышцу сердца, что весьма опасно для жизни, поскольку спустя 1-2с с момента замыкания цепи этого тока через человека может наступить фибрилляция. При этом прекращается кровообращение и в организме возникает недостаток кислорода, что, в свою очередь, приводит к прекращению дыхания, то есть наступает смерть. Эти токи называют фибрилляционными, а наименьший из них - пороговым фибрилляционным током.

Ток более 5 А, как правило, фибрилляцию сердца не вызывает. При таких токах происходит немедленная остановка сердца, минуя состояние фибрилляции, а также паралич дыхания. В случае, если действие тока было кратковременным (до 1-2с) и не вызвало повреждение сердца (в результате нагрева, ожога и т.п.), то после отключения тока сердце, как правило, самостоятельно возобновляет нормальную деятельность. Дыхание про этом самостоятельно не восстанавливается и требуется немедленная помощь пострадавшему в виде искусственного дыхания.

Длительность прохождения тока через живой организм существенно влияет на исход поражения: чем продолжительнее действие тока, тем больше вероятность тяжёлого поражения или смертельного исхода. Такая зависимость объясняется тем, что с увеличением времени воздействия тока на живую ткань растёт величина этого тока, повышается вероятность совпадения момента прохождения тока через сердце с уязвимой фазой Т сердечного цикла (0,2с).

Путь тока в теле пострадавшего играет существенную роль в исходе поражения. Если на пути тока оказываются жизненно важные органы - сердце, органы дыхания, головной мозг, то опасность поражения весьма велика, поскольку ток воздействует непосредственно на эти органы. Когда ток проходит по иным путям, то воздействие на жизненно важные органы может быть лишь рефлекторным, благодаря чему вероятность тяжёлого поражения резко снижается. Так как сопротивление кожи на разных участках тела различно, то влияние пути тока на исход поражения зависит и от места приложения токоведущих путей к телу пострадавшего.

Возможных путей тока в теле человека очень много; наиболее часто встречаются следующие: правая рука - ноги, левая рука - ноги, рука - рука и нога - нога. Опасность того или иного пути тока можно оценивать по тяжести поражения, а также по значению тока, протекающего через сердце, при данной петле.

Известно, что значение тока, проходящего через сердце человека (в процентах от величины общего тока, проходящего через тело), составляет при пути правая рука - ноги - 6,7 %; левая рука - ноги - 3,7 %; рука - рука - 3,3 %; нога - нога - 0,4 %.

Таким образом наиболее опасным является путь правая рука - ноги, а наименее опасным - путь нога - нога.

Постоянный ток, как показывает практика, примерно в 4-5 раз безопаснее, чем переменный ток промышленной частоты (50 Гц). Однако это справедливо для относительно небольших напряжений - до 250-300 В. При более высоких напряжениях опасность постоянного тока возрастает.

Индивидуальные свойства человека играют заметную роль в исходе поражения. Установлено, что здоровые и физически крепкие люди легче переносят электрические удары, чем больные и слабые. Повышенной восприимчивостью к электрическому току обладают лица, страдающие рядом заболеваний, прежде всего болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, лёгких, нервными болезнями и др.

Вопрос №34. Классификация помещений и мест производства работ по условиям поражения электрическим током.

а) электроустановки:

Класс 0 - защита от поражения электрическим током обеспечивается основной изоляцией.

Класс l - защита от поражения электрическим током обеспечивается основной изоляцией и соединением корпуса электрооборудования при помощи защитных проводников с заземляющим устройством.

Класс 2 - защита от поражения электрическим током обеспечивается применением двойной изоляции.

Класс 3 - защита от поражения электрическим током основана на питании от источника безопасного сверхнизкого напряжения (12... 36 В).

б) помещения:

1 категория - без опасности поражения электрическим током, в которых отсутствуют условия, создающие повышенную или особую опасность;

2 категория - с повышенной опасностью поражения электрическим током, характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

- наличие сырости (влажность>75%) или токопроводящей пыли;

- наличие токопроводящих полов (земляные, металлические, кирпичные, бетонные, асфальтовые);

- наличие высокой температуры (плюс 35 градусов) постоянно или периодически (более суток);

- возможность одновременного прикосновения человека к соединенным с металлическими конструкциями зданий, механизмам с одной стороны металлическим корпусам электрооборудования с другой стороны.

3 категория - с особой опасностью поражения электрическим током, если есть один из следующих признаков:

- особая сырость (влажность около 100%);

- химически активная или органическая среда (аккумуляторные); два или более признака категории 2 одновременно.

Вопрос №35. Основные направления защиты человека от поражения электрическим током.

Все существующие меры защиты по принципу их действия можно разделить на три группы:

· обеспечение недоступности токоведущих частей оборудования;

· снижение напряжения прикосновения (а следовательно, и тока через человека) до безопасного значения;

· ограничение продолжительности воздействия электрического тока на организм человека.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: