Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Уравнение Клапейрона — Менделеева




Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

f (p, V, T) = 0 ,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799—1864) вывел уравнение состояния идеального газа, объединив законы Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре Т1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами p2, V2, Т2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов:

1) изотермического (изотерма 1 — 1/),

2) изохорного (изохора 1/ — 2).

В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) запишем:

(42.1)

(42.2)

Исключив из уравнений (42.1) и (42.2) , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

. (42.3)

Выражение (42.3) является уравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем Vm . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

(42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях ( = 1,013×105 Па, = 273,15 K, = 22,41×10-3 м3/моль): R = 8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона — Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса m газа займет объем V = (m/M) Vm, где Ммолярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы m газа

(42.5)

где = m/M — количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана: = 1,38×10-23 Дж/К.




Исходя из этого, уравнение состояния (42.4) запишем в виде

где — концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

(42.6)

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта (И. Лошмидт (1821—1895) — австрийский химик и физик): 2,68×1025 м-3.





Дата добавления: 2015-01-21; просмотров: 5605; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент - человек, постоянно откладывающий неизбежность... 10214 - | 7235 - или читать все...

Читайте также:

  1. V2: Уравнение Шредингера
  2. Адиабатический процесс. Уравнение Пуассона. Первое начало термодинамики применительно к адиабатическому процессу
  3. Астана 2013 г. Тема №8:Окислительно-восстановительные свойства элементов и их соединений в зависимости от положения в периодической системе Д.И.Менделеева
  4. Б) Уравнение электрического равновесия фазы обмотки статора
  5. Билет 26. Динамика твёрдого тела. Уравнение движения и уравнение моментов
  6. Биполярный транзистор. Принцип действия. Уравнение токораспределения
  7. Волновое уравнение
  8. Вопрос31. Взаимосвязь окислительно-восстановительных свойств элементов с положением элемента в Периодической системе элементов Д.И. Менделеева
  9. Вопросы и задачи. п1. Дано уравнение прямой l: 2x-3y+1=0
  10. Вращательное движение. Частота вращения, период. Угловая скорость и угловое ускорение. Уравнение равномерного и равнопеременного вращательного движения
  11. Второе уравнение Максвелла в дифференциальной форме записывается в виде
  12. Второй закон термодинамики. Энтропия. Объединенное уравнение I и II законов для обратимых процессов


 

3.81.28.94 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.