Графоаналитический метод интегрирования уравнения движения (метод последовательных интервалов)

Метод применяется при нелинейных механических характеристиках двигателя и механизма. Для расчета нужно иметь эти механические характеристики. Имея их, строится кривая динамического момента, как и в методе пропорций.

Пусть кривая момента двигателя задана в виде ломанной линии (пуск в несколько ступеней), а кривая статического момента – в виде пунктирной кривой (см. график). Задаваясь последовательно приращениями скорости Dw1, Dw2 и т.д. находят среднее значение Мдин.ср. для каждого участка. Иначе говоря, кривая динамического момента (она здесь неизображена) делится на ряд участков, на каждом из которых Мдин. считается постоянным и равным среднему значению.

Полученные значения Мдин.ср. подставляются в формулу

И вычисляется время для каждого участка приращения w.

Обычно все расчеты сводятся в таблицу, на основании которой строится кривая w=f(t) и аналогично изложенному ранее, кривая М=f(t).

Уравнения переходных процессов электропривода с линейной механической характеристикой при w0=f(t) и Mc=const.

При пуске электропривода включением его в сеть на полное напряжение U=const и f1=const переходные процессы протекают при скачке напряжения, или как говорят, скачке управляющего воздействия, когда w0=const. Для ограничения бросков тока и момента в якорную или роторную цепь двигателя приходится вводить добавочное сопротивление. Переходные процессы при этом будут далеки от оптимальных. При питании двигателя от преобразователя напряжения или частоты (в замкнутых системах) можно получить переходные процессы, близкие к оптимальным, путем плавного изменения управляющего воздействия. Они протекают в этом случае при w0=f(t). При этом ограничивается темп нарастания управляющего воздействия путем ограничения ускорения e0 Т.о. переходные процессы протекают в этом случае при U=var или f=var.

Проанализируем переходные процессы при линейном изменении управляющего воздействия w0 во времени, т.е. при линейном изменении U или f1, при котором w0=w0 нач+e0t.

Исходными дифференциальными уравнениями для получения расчетных соотношений являются ранее полученные уравнения

При соотношении постоянных времени величиной Тэ можно пренебречь и уравнение, определяющее закон изменения w, будет иметь вид

Правая часть этого уравнения – частное решение, соответствующее установившемуся режиму, когда все свободные составляющие затухнут. Для этого режима w=a+bt, где а и b – неопределенные коэффициенты, находимые из начальных условий. Имея в виду, что , получим при t=0

Отсюда

Общее решение дифференциального уравнения относительно w

или

При t=0 w=wнач, следовательно ,откуда

.

Окончательно закон изменения скорости

Закон изменения момента в переходном режиме находится аналогично

.отсюда

Используя эти выражения, исследуем переходные процессы при различных режимах и различных по характеру моментах сопротивления.

Переходный процесс пуска электропривода с линейной механической характеристикой при реактивном моменте сопротивления и w0=f(t)

Исходными уравнениями для анализа переходного процесса являются

Изобразим механические характеристики, на которых электропривод работает в процессе пуска, а рядом будут изображаться кривые переходного процесса. Процесс пуска разбивается на три этапа. На первом этапе двигатель неподвижен (w=0), а момент его нарастает по линейному закону

т.к. w0 нач=0

Время запаздывания

По достижении моментом двигателя значения, равного Мс, двигатель приходит во вращение и начинается второй этап (II), который закончится, когда w0 перестанет изменяться, т.е. станет равной w0=const. Начальные условия для второго этапа: wнач=0; w0 нач=Dwс ; Mначс.

Законы изменения w и М получим, подставив начальные условия в исходные уравнения

Кривые отражающие процесс на этом этапе изображены на графике (начало координат переносится при этом в т. tз и отсчет времени начинается с момента tз.).

В конце второго этапа (t=t0) двигатель выходит на характеристику, соответствующую w0=const. До этого он последовательно переходит с одной характеристики на другую, каждой из которых соответствует своя w0. Зависимости w=f(t) и М=f(t) позволяют построить фазовую траекторию, т.е. динамическую характеристику (см.график).

На третьем этапе (III) двигатель работает при неизменном U (неизменной частоте f1) при w0=const. Происходит дотягивание до скорости, соответствующей установившемуся режиму в т.А. На этом этапе законы изменения w и М описываются уравнениями соответствующими w0=const, т.е. постоянству управляющего воздействия (постоянству U сети или постоянству частоты f1

Начало координат при этом надо перенести в т. t0, т.е. время на этом этапе отсчитывается от t0. Общее время переходного процесса tпп=tз+t0+3TM.

Переходный процесс электропривода с линейной механической характеристикой при реверсе и w0=f(t)

При активном Мс переходный процесс в случае плавного изменения управляющего воздействия (U1 или f1) при котором w0 изменяется по закону

исходными уравнениями для анализа переходного процесса являются те же,что и при реактивном Мс. Считаем, что w0 изменяется от w0 ном до -w0 ном. Реверс разбивается на два этапа. Первый этап заканчивается когда w0 станет равной -w0 ном и двигатель выходит на характеристику, соответствующую этой скорости.

Подставляя в исходные уравнения значения w0 нач =w0 ном, wнач =wс, Мначс и учитывая, что ускорение e0 при снижении скорости отрицательно, получим для первого этапа реверса законы изменения w и М

В зависимости от соотношения Мс, e0 и Тм суммарный перепад скорости

может быть больше, равен или меньше 0. Если , двигатель в процессе снижения скорости продолжает работать в двигательном режиме, Dwс>0, а при изменении знака w, т.е. изменении направления вращения, переходит в тормозной режим с w>w0.

При двигатель при снижении скорости работает в тормозном режиме с w>w0, а при разгоне в противоположном направлении переходит в двигательный режим (пунктирная кривая на графике).

На втором (II) этапе процесс протекает при w0 =-w0 ном=const и описывается уравнениями как при питании от сети с неизменным напряжением (частотой). Длительность этого этапа

~ 3ТМ. Происходит дотягивание до скорости -wс.

Процесс реверса при реактивном Мс рассмотрим на примере электропривода с ДНВ при линейном изменении напряжения на якоре двигателя

В процессе торможения закон движения электропривода тот же, что и при активном Мс. Начальная разность между напряжением Uя=Uн на якоре и ЭДС двигателя Е=КФwс, равная падению напряжения на сопротивлении якорной цепи от тока статической нагрузки JcRяS, уменьшается до значения, равного падению напряжения от установившегося тока при реверсе

. Ток якоря при этом уменьшается от значения Ic до Iр.уст и затем остается неизменным до w=0. В момент перехода w через 0 Мс изменяет свой знак.

Для того, чтобы начался разгон в противоположную сторону, необходимо, чтобы ток тоже изменил направление на противоположное и увеличился после этого до значения, превышающего .Поэтому возникает пауза в движении, аналогичная времени запаздывания пр пуске в ход.

Во время этой паузы ток нарастает (см. график) по закону

; а w=0

Пауза заканчивается, когда ток станет равным –Ic и двигатель начинает вращаться в противоположном направлении. Далее процесс будет протекать аналогично случаю пуска. Время паузы

Если увеличивать темп изменения Uя, т.е. величину , то вследствие роста динамического тока Iдин=Iс-Iр.уст при торможении ток Iр.уст=Iс-Iдин вначале будет уменьшаться

до 0, а затем изменит свой знак. При этом tп уменьшается и при Iр.уст=Iс становится равным 0. Из уравнения движения для этого случая –М-Мс=ISe0 можно определить ускорение e0` соответствующее этому условию

Если , то процесс изменения w при реверсе является непрерывным, лишь при переходе w через 0 скачком изменяется ускорение. Для рассмотренного случая на левом графике изображена и динамическая характеристика.

Рассмотренные переходные процессы позволяют сделать выводы: 1) Задаваемый на входе системы закон изменения скорости w воспроизводится с ошибкой, которая в установившемся переходном процессе складывается из ошибки, равной статическому перепаду скорости Dwс и ошибки, равной динамическому падению

;

Увеличение b статической механической характеристики влечет за собой соответствующее уменьшение отклонения кривой w=f(t) от кривой w0=f(t).

2). Закон изменения UЯ для двигателей постоянного тока или частоты f1 для двигателей переменного тока определяет характер изменения w в переходном режиме с тем большей точностью, чем меньше Тм. Этот вывод справедлив не только для случая линейного закона изменения управляющего воздействия, но и, например, для экспоненциального закона. В качестве примера оценим характер изменения ЭДС двигателя, пропорциональной скорости w в переходном процессе пуска двигателя постоянного тока при Мс=0, когда Uя измениться по закону , где Тип – электромагнитная постоянная времени источника питания. Пусть Тип>>Тм. Начальная часть кривой UЯ близка прямой 1, соответствующей неизменному значению . Если бы UЯ нарастало по линейному закону, ток изменялся бы по закону экспоненты (кривая 2) с постоянной Тм, стремясь к значению Iмакс. Но поскольку темп нарастания UЯ в действительности уменьшается, ток, достигнув значения I``макс при t=tмакс, начнет уменьшаться по закону близкому к закону, определяющему темп изменения напряжения . ЭДС двигателя изменяется по кривой 3, отличаясь от UЯ в каждый момент времени на величину падения напряжения в цепи якоря при данном токе. Чем меньше ТМ, тем меньше падение напряжения, тем ближе кривая 3 к кривой UЯ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: