Задание 1. Найти площадь фигуры, ограниченной данными линиями. Сделать чертеж.
1.
.
2.
.
3.
.
4.
.
5.
.
6.
.
7.
.
8.
.
9.
.
10.
.
Задание 2. Найти объем тела, ограниченного данными поверхностями. Сделать чертежи данного тела и его проекции на плоскость Oxy.
1.
.
2.
.
3.
.
4.
.
5.
.
6.
.
7.
.
8.
.
9.
.
10.
.
Задание 3. Вычислить криволинейные интегралы 2-го рода, взятые вдоль данных кривых.
1.
, где L - кривая x = t, y = t 2, z = t 3,
.
2.
, где L - виток винтовой линии x= cos t, y= sin t, z=t,
.
3.
, где L - виток конической винтовой линии x=et cos t, y=et sin t, z=et от точки А (0,0,0) до точки В (1,0,1).
4.
, где L - отрезок прямой ОС от точки О (0,0,0) до точки С (1,1,1).
5.
, где L - ломанная ОАВС, соединяющая точки О (0,0,0), А (1,0,0), В (1,1,0), С (1,1,1)
6.
, где L - верхняя половина эллипса x= 5cos t, y= 4sin t,
.
7.
, где L - отрезок прямой АВ от точки А (1,2) до точки В (3,6).
8.
, где L - граница треугольника АВС с вершинами А (2,0), В (2,2), С (0,2).
9.
, где L - дуга окружности x= 3cos t, y= 3sin t, от точки А (3,0) до точки В (0,3).
10.
, где L - виток винтовой линии x= 3cos t, y= 3sin t, z= 4 t,
.
Задание 4. Вычислить следующие поверхностные интегралы 1-го рода. Сделать чертежи данной поверхности и ее проекции на плоскость Oxy.
1.
, где S - поверхность
.
2.
, где S - граница тела
.
3.
, где S - граница тетраэдра
.
4.
, где S - поверхность
.
5.
, где S - плоскость 2 x-y+ 2 z- 2=0, расположенная в 1-ом октанте.
6.
, где S - поверхность сферы
.
7.
, где S - часть поверхности
, вырезанная поверхностью
.
8.
, где S - полусфера
.
9.
, где S - поверхность конуса
.
10.
, где S - плоскость
, расположенная в 1-ом октанте.
Задание 5. Дано векторное поле
и плоскость P, которая с координатными плоскостями образует пирамиду T. Пусть SABC - основание пирамиды, принадлежащее плоскости P, LABC - контур, ограничивающий SABC. Вычислить:
1) поток векторного поля
через полную поверхность S пирамиды T в направлении внешней нормали (непосредственно и по теореме Гаусса-Остроградского);
2)циркуляцию данного векторного поля
по контуру LABC (непосредственно и по теореме Стокса).
1.
.
2.
.
3.
.
4.
.
5.
.
6.
.
7.
.
8.
.
9.
.
10.
.






