Иногда оказывается возможным, перенеся все члены уравнения в левую часть, разложить ее на сомножители

1. Уравнения, однородные относительно и .

Каждое из уравнений:

,

и т.д.

называется однородным относительно и . Сумма показателей степеней у и во всех членах такого уравнения одинакова. Эта сумма называется степенью однородного уравнения. Делением на , степень однородного уравнения, оно приводится к уравнению, алгебраическому относительно .

Разделив, например, уравнение на , получим уравнение:

.

При эти уравнения эквивалентны, так как если , то из первого уравнения получим, что и , что невозможно ( и при одном и том же аргументе в нуль не обращаются). Далее из эквивалентного уравнения находим , решая квадратное уравнение относительно , а по значениям - соответствующие значения .

4. Решить уравнение:

Решение. Заменяя и , получим однородное уравнение:

,

или

.

Деля на ( ), получим:

.

Вводим новую переменную и получаем квадратное уравнение относительно нее:

.

Корни этого уравнения: . Далее получаем равносильную совокупность уравнений:

2. Уравнения, левая часть которых раскладывается на множители, а правая часть равна нулю.

Перенеся все члены любого уравнения в левую часть, его можно привести к виду .

Если левая часть этого уравнения раскладывается на сомножители, то каждый из них приравнивается к нулю, и уравнение распадается на несколько простых уравнений. Очень важно при этом иметь в виду, что корнями первоначального уравнения будут только те из корней полученных уравнений, которые входят в область определения первоначального уравнения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: