double arrow

Структурно-механические свойства пищевых продуктов основные понятия

Структурно-механические свойства (СМС) реальных объектов проявляются при механическом воздействии на них касательными или нормальными напряжениями. Протекание разнородных процессов — механических, тепловых, диффузионных, электрических — в значительной степени определяется структурно-механическими свойствами. Они зависят от внутреннего строения и состава продукта, характера взаимодействия частиц или молекул между собой, физико-химического состояния влаги в материале, т. е. от типа структуры.

Пищевые продукты в процессе технологической обработки в большинстве случаев измельчаются и переходят в дисперсные системы. Дисперсионная, или непрерывная, среда окружает частицы дисперсной фазы. При большой концентрации частиц дисперсной фазы система не является легкотекучей и имеет упруго-пластичные свойства, ее можно охарактеризовать как твердообразную. При малой концентрации система является легкотекучей, жидкообразной и не имеет выраженных упруго-пластичных свойств. Таким образом, пищевые продукты в натуральном виде и в виде дисперсий имеют определенное строение, т. е. структуру, которая характеризуется видом связей между ее элементами и обусловливает проявление тех или иных физических свойств.

Структуры пищевых продуктов по характеру связей между их элементами подразделяют на два основных класса: коагуляционные и конденсационно-кристаллизационные. Коагуляционные структуры образуются в дисперсных системах путем взаимодействия между частицами и молекулами через прослойки дисперсионной среды. Термодинамически стабильны системы, у которых с поверхностью частиц прочно связаны фрагменты молекул, способные без утраты этой связи растворяться в дисперсионной среде. Эти структуры обычно обладают способностью к самопроизвольному восстановлению после разрушения (тиксотропия). Нарастание прочности после разрушения происходит постепенно и имеет определенный предел. Коагуляционные структуры могут иметь твердо- и жидкообразное состояние.

Конденсационно-кристаллизационные структуры характерны для натуральных продуктов, однако могут образовываться из коагуляционных при удалении дисперсионной среды или при срастании частиц дисперсной фазы в расплавах или растворах. В процессе образования их прочность увеличивается; после разрушения эти структуры не восстанавливаются.

Структурно-механические свойства характеризуют поведение продукта в условиях напряженного состояния. По виду приложения усилия или напряжения к продукту эти свойства можно разделить на три группы: сдвиговые, объемные и поверхностные.

Сдвиговые свойства характеризуют поведение объема продукта при воздействии на него сдвиговых, касательных напряжений.

Объемные свойства определяют поведение объема продукта при воздействии на него нормальных напряжений в замкнутой форме или между двумя пластинами.

Поверхностные свойства характеризуют поведение поверхности продукта на границе раздела с другим, твердым материалом при воздействии нормальных (адгезия) и касательных (внешнее трение) напряжений.

Для решения многих задач связанных с механической переработкой различных пищевых продуктов, необходимо знать как ведут себя под нагрузками и при деформировании эти материалы. Изучением этих свойств занимается инженерная реология.

Реология - это наука о деформации и течении различных тел.

Реология включает два раздела:

– посвященный изучению структурно – механических свойств реальных тел;

– раздел в котором рассматривается движение реальных тел в рабочих органах машин и аппаратов, и разрабатываются инженерные методы их расчета.

К основным процессам, в изучении которых реология призвана внести существенный вклад, можно отнести следующие:

1) нагнетание пищевых масс (хлебопекарное, бараночное и макаронное тесто, кондитерские массы, фарш, пасты и т.д.) различными рабочими органами (шнеками, валками, плунжерами, шестернями и т.д.);

2) выпрессовывание масс через формующие отверстия матриц для придания изделиям необходимой формы, причем часто выдавливание производится одновременно через большое количество отверстий, и в этих случаях обеспечение равномерности скоростей истечения из всех отверстий по фронту матрицы является весьма важным;

3) штампование упруго-пластично-вязких масс для придания изделиям требуемой формы или нанесения рельефного рисунка;

4) транспортирование вязких и вязко-пластических масс по каналам различного профиля, длины и диаметра;

5) смешивание двух или нескольких компонентов для получения однородных смесей;

6) резание полуфабрикатов и готовых продуктов;

дробление, сепарирование, брикетирование, штабелирование и некоторые другие процессы.

Рассмотрим некоторые основные физико-математические понятия реологии.

Деформация – изменение линейных размеров тела, при котором частицы или молекулы смещаются друг относительно друга без нарушения сплошности тела. Относительная деформация ε представляет собой отношение абсолютной Δ l (м) к первоначальным размерам тела l (м), т.е.

.

Деформации могут быть сдвиговыми, одноосными (линейными) и объемными.

Деформации могут изменяться во времени τ (с) при неустановившемся процессе, при установившемся процессе деформирования изменение деформации в единицу времени постоянно. Все это описывается понятием «скорость деформации» (1/с):

.

Если деформация под действием конечных сил растет непрерывно и неограниченно, то материал начинает течь. Установившейся режим течения характеризуется градиентом скорости, который по смыслу аналогичен скорости деформации:

,

где ω – линейная скорость, м/с;

х – расстояние по нормали между двумя элементарными слоями, м.

Напряжение – сила Р (Н), действующая на единицу площади F2):

сдвиговое или касательное напряжение θ (Па):

;

нормальное напряжение σ (Па):

.

Давление р, или гидростатическое давление, – понятие, аналогичное нормальному напряжению.

Упругость – способность тела после деформирования полностью восстанавливать свою первоначальную форму, т.е. работа деформирования равна работе восстановления. Упругость тел характеризуется модулем упругости первого Е (Па) или второго рода, соответственно при сжатии-растяжении и сдвиге, который входит в закон Гука:

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: