Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Билет 11. Вопрос 1. Соединение фаз генератора и потребителей звездой: симметричная и несимметричная нагрузка, векторная диаграмма




Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 1 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0’). Обе точки 0 и 0’ соединены проводом, который называется нулевым, или нейтральным проводом. Остальные три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырехпроводной системой трехфазного тока.

Отбрасывая нулевой провод в четырехпроводной системе, переходим к трехпроводной системе трехфазного тока. Если имеется симметричная нагрузка, как, например, трехфазные двигатели переменного тока, трехфазного тока, трехфазные печи, трехфазные трансформаторы и т. п., то к такой нагрузке подводятся только три провода. Потребители, включенные звездой с несимметричной нагрузкой фаз, нуждаются в нулевом проводе.При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость: Uл=sqrtUф.

Билет 12. Вопрос 1. Трансформаторы: типы, назначение, эксплуатация. Силовые трансформаторы: устройство, принцип действия. Трансформаторы — электромагнитные статические преобразователи электрической энергии. Основное назначение трансформаторов — изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты. Наибольшее распространение имеют силовые трансформаторы напряжения, которые выпускаются электротехнической промышленностью на мощности свыше миллиона киловольт-ампер и на напряжения до 1150 - 1500 кВ. Для передачи и распределения электрической энергии необходимо повысить напряжение турбогенераторов и гидрогенераторов, установленных на электростанциях с 16 - 24 кВ до напряжений 110, 150, 220, 330, 500, 750 и 1150 кВ, используемых в линиях передачи, а затем снова понизить до 35; 10; 6; 3; 0,66; 0,38 и 0,22 кВ, чтобы использовать энергию в промышленности, сельском хозяйстве и быту. Так как в энергетических системах имеет место многократная трансформация, мощность трансформаторов в 7 - 10 раз превышает установленную мощность генераторов на электростанциях.Силовые трансформаторы в выпускаются в основном на частоту 50 Гц.




Билет 13. Вопрос 1. Режимы работы трансформатора: режим холостого хода, рабочий режим, режим короткого замыкания. КПД трансформатора. Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. Такой режим работы может быть у реального трансформатоpa, когда он подключен к сети, а нагрузка, питаемая от его вторичной обмотки, еще не включена. Рабочий режим — это работа трансформатора при подключенных потребителях или под нагрузкой (под нагрузкой понимается ток вторичной цепи — чем он больше, тем больше на­грузка). К трансформатору подключаются различного рода потребители: электрические двигатели, освещение и т. п. Режим короткого замыкания, возникающий случайно в процессе эксплуатации при номинальном первичном напряжении, является аварийным процессом, сопровождающимся весьма большими токами в обмотках. Многократное повышение токов по сравнению с номинальными (в 10-20 раз) может привести к повреждению изоляции обмоток в следствии нагрева и к разрушению обмоток механическими силами, возникающими при этом режиме между обмотками. Коэффициентом полезного действия трансформатора называется отношение активной мощности, передаваемой нагрузке, к активной мощности, подводимой к трансформатору. КПД трансформатора имеет высокое значение. У силовых трансформаторов небольшой мощности он составляет примерно 0,95, а у трансформаторов мощностью в несколько десятков тысяч киловольт-ампер доходит до 0,995. Определение КПД по формуле с использованием непосредственно измеренных мощностей P1 и P2 даёт большую погрешность. Удобнее эту формулу представить в другом виде:КПД=P2/P1 +сумарное дельта Р



Билет 14. Вопрос 1. Мощность переменного тока: виды, единицы измерения, коэффициент мощности.Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя тока, с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, на сколько сдвинут по фазе ток, протекающий через потребитель электроэнергии, относительно приложенного к потребителю напряжения. Активная мощность (P) (W, Вт). В цепях однофазного синусоидального тока , P=U*I*cosфи ,где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I2*r=U2*g. С полной мощностью S активная связана соотношениемP=S*COSфи. Реактивная мощность (Q) Единица измерения — вар .Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:Q=U*I*sinфи (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до —90° является отрицательной величиной. Полная мощность (S) Единица полной электрической мощности —В*А Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением:S=sqrtP2+Q2 , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: Sвектор=Pвектор+Qвектор

Билет 15. Вопрос 1. Последовательная цепь переменного тока. Резонанс напряжений: условия возникновения, учёт, использование.Через все элементы цепи протекает один и тот же ток, поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности, на емкости и на резисторе: Uвектор=uL+uC+uC (4.34)напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на пи/ 2, а напряжение на
емкости отстает от тока по фазе на пи/2. Можно записать эти напряжения в следующем виде:UR = U0RSINwt = I0RSINwt ; UL=U0LSIN(wt + пи/2); UC=U0CSIN(wt-пи/2) = I0/wc * sin(wt-пи/2).Поскольку нам известны амплитуды и фазы векторов, мы можем построить векторную диаграмму и найти векторU(рис. 4.17).
Из этой векторной диаграммы мы можем найти модуль вектора приложенного к цепи напряженияUи сдвиг по фазефимежду током и напряжением:
(4.36)
где величина(4.37)Резонанс напряжений характеризуется обменом энергии между магнитным полем катушки и электрическим полем конденсатора.
Увеличение магнитного поля катушки индуктивности происходит исключительно за счет уменьшения энергии электрического поля в конденсаторе и наоборот.
Следует обратить внимание на то, что при резонансе напряжения на реактивных сопротивленияхXL и XCмогут заметно превышать приложенное к цепи напряжение. Если мы возьмем отношение приложенного напряжения к напряжению на индуктивности (или емкости), то получимUL=U*XL/Rто есть напряжение на индуктивности будет больше приложенного напряжения в xL/Rраз. Это означает, что при резонансе напряжений на отдельных участках цепи могут возникать напряжения, опасные для изоляции приборов, включенных в данную цепь. В радиотехнике явление резонанса напряжений находит широкое применение в приемно-передающей
аппаратуре и радиоизмерительных приборах.

Билет 16. Вопрос 1. Цепь переменною тока с емкостью и активным сопротивлением: значение тока и напряжения, векторная диаграмма.Через конденсатор и через резистор протекает один и тот же ток, описываемый формулой (4.16), поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на конденсаторе и на резисторе:(4.28)
Напряжение на резисторе, как было показано выше, будет совпадать по фазе с током:
(4.29)а напряжение на конденсаторе будет отставать по фазе от тока на угол пи/2:
Построив векторы,и воспользовавшись формулой (4.28), найдем векторU.Векторная диаграмма показана на рис. 4.15.Из векторной диаграммы следует, что в рассматриваемой цепи ток I опережает по фазе приложенном напряжение,вектор Uно не на пи/ 2, как в случае чистой емкости, а на некоторый уголфи.Этот угол может принимать значения от 0 допи /2 и при заданной емкости С зависит от значения активного сопротивления: с увеличениемRуголфиуменьшается. Как видно из векторной диаграммы, модуль вектораUравен
(4.31)
где величина
(4.32)называется полным сопротивлением цепи.Сдвиг по фазеФИмежду током и напряжением данной цепи определяется из векторной диаграммы.

Билет 17. Вопрос 1. Цепь переменного тока с индуктивностью и активным сопротивлением: значения тока и напряжения, векторная диаграмма.Через катушку и резистор протекает один и же ток, поэтому в качестве основного выберем вектортока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе:
U=UL+UR (4.17) I=I0SINWt Напряжение на резисторе, как было показано выше, будет совпадать по фазе с током: (4.18) а напряжение на индуктивности будет равно ЭДС самоиндукции со знаком минус (по второму правилу Кирхгофа): . (4.19) Мы видим, что напряжение на индуктивности опережает ток на угол пи/2. Построив векторы и , и воспользовавшись формулой (4.17), найдем вектор U Векторная диаграмма показана на рис. 4.10. Мы видим, что в рассматриваемой цепи ток I отстает по фазе от приложенного напряжения U, но не на пи / 2, как в случае чистой индуктивности, на некоторый угол фи. Как видно из векторной диаграммы, модуль вектораUравен, (4.20)где величина (4.21)называется полным сопротивлением цепи. Сдвиг по фазефимежду током и напряжением данной цепи также определяется из векторной диаграммы:(4.22)

Билет 18. Вопрос 1. Реактивные элементы в цепи переменного тока: понятие, характеристики, графическое изображение. Индуктивность и ёмкость в цепи переменного тока. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления получена формула XL = ωL.[ Ом. ] Величина xL линейно зависит от частоты. Для емкостного сопротивления выше формула XC = 1 / ωC. [Ом]. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC. Рассмотрим цепь, содержащую в себе катушку индуктивности В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току. Так как в последовательной цепи ток, текущий через емкость, равен току, текущему через индуктивность, то напряжение на индуктивности тем больше напряжения на емкости, чем индуктивное сопротивление больше емкостного и наоборот.==> если при последовательном включении индуктивности и емкости индуктивное сопротивление больше емкостного, то характер общего сопротивления цепи будет индуктивным и наоборот.При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения. Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят.





Дата добавления: 2015-02-24; просмотров: 2310; Опубликованный материал нарушает авторские права? | Защита персональных данных


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше... 9454 - | 7498 - или читать все...

Читайте также:

 

18.206.76.41 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.