Случай специальной правой части

Общий вид:

у¢¢ + а1у¢ + а2у = f(x), (14)

где . (15)

Здесь Pm(x) и Qn(x) - алгебраические многочлены степеней соответственно m и n.

В этом случае общее решение (14) получается как сумма общего решения (13) и какого-либо частного решения (14): уо. н. = уо. о. + уч. н..

Покажем, как находить уч. н., когда f(х) имеет вид (15). Исходя из конкретного вида (15), составляется число . Далее ставится вопрос: является ли корнем характеристического уравнения (13¢). Здесь возможны 3 случая, для каждого из которых строится уч. н..

Объединим эти случаи в табл.2.

Таблица 2.

Число Вид уч. н.
1. Не является корнем характеристического уравнения уч. н. =
2. Является корнем характеристического равнения кратности 1 уч. н . =
3. Является корнем характеристического уравнения кратности 2 уч. н. =

Здесь - алгебраические многочлены степени , где = max(m, n). Коэффициенты находятся методом неопределенных коэффициентов так, как это показано на следующем примере.

ПРИМЕР. у¢¢ - 4у = х - 1.

Это - неоднородное уравнение 2-го порядка с постоянными коэффициентами и со стандартной правой частью.

Характеристическое уравнение: к2 - 4 = 0. к1 = 2, к2 = -2.

уо. о. = С1e + С2e-2х (случай (а) табл.1).

Составляем . Т. к. здесь a = 0 и b = 0, то = 0; число 0 не является корнем характеристического уравнения, т. е. Это 1-й случай табл. 2. Следовательно, уч. н. = Ах + В (здесь А и В - неизвестные коэффициенты. Найдем их.). Подставим уч. н. в исходное уравнение. Т. к. у¢ч. н. = А, у¢¢ч. н. = 0, то

-4 * (Ах + В) = х - 1.

Приравниваем слева и справа коэффициенты при одинаковых степенях Х (в этом и заключается метод неопределенных коэффициентов).

.

Итак, уч. н. = . Тогда уо. н. = уо. о. + уч. н. = - есть общее решение исходного уравнения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: