Общее число степеней свободы

где число степеней свободы поступательного движения;

– число степеней свободы вращательного движения;

– число степеней свободы колебательного движения;

iкп – число степеней свободы колебаний точки при поступательном движении;

iквр – число степеней свободы колебаний точки при вращательном движении.

Молекулы газа имеют число степеней свободы:

а) одноатомная – i = 3 (три степени свободы поступательного движения);

б) двухатомная при упругой связи между атомами – i = 6;

в) двухатомная при жёсткой связи между атомами – i = 5;

г) трёхатомная молекула при жёсткой связи между атомами – i = 6.

Теорема о равномерном распределении энергии по степеням свободы: «На любую степень свободы приходится в среднем одинаковая энергия, равная ». Молекула, обладающая i степенями свободы, обладает энергией

где i = iп + iвр + iк.

Внутренняя энергия произвольной массы газа m равна сумме из энергий отдельных молекул:

,

где m – молярная масса газа.

Теплоемкостьфизическая величина, численно равная количеству теплоты, которое необходимо сообщить веществу для нагревания его на один градус.

Удельная теплоёмкость (c)физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус.

Молярная теплоёмкость (C) – физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус:

.

Удельная теплоёмкость при постоянном объеме (cv) – физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус в условиях постоянного объема:

Удельная теплоёмкость при постоянном давлении (cp) – физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус в условиях постоянного давления:

.

Молярная теплоёмкость при постоянном объеме (Cv) – физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус в условиях постоянного объема:

. .

Молярная теплоёмкость при постоянном давлении (Cp) – физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус в условиях постоянного давления:

, .

Отношение молярных и удельных теплоемкостей g:

Система – совокупность рассматриваемых тел (в частности, молекул, атомов, частиц).

Параметры состояния системы: p – давление, V – объём, T – температура:

а) интенсивные параметры – параметры (давление, температура, концентрация и др.), не зависящие от массы системы.

Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Свойство температуры – определять направление теплового обмена. Температура в молекулярной физике определяет распределение частиц по уровням энергии и распределение частиц по скоростям.

Термодинамическая температурная шкала – температурная шкала, определяемая температура (абсолютная температура) в которой всегда положительна;

б) экстенсивные параметры – параметры (объем, внутренняя энергия, энтропия и др.), значения которых пропорциональны массе термодинамической системы или ее объему.

Внутренняя энергия системы – суммарная кинетическая энергия хаотического движения молекул, потенциальная энергия их взаимодействия и внутримолекулярная энергия, т.е. энергия системы без учёта кинетической энергии её в целом (при движении) и потенциальной энергии во внешнем поле.

Изменение внутренней энергии при переходе системы из состояния в состояние равно разности значений внутренней энергии в этих состояниях и не зависит от пути перехода системы из одного состояния в другое.

Уравнение состояния системы:

F(p,V,T) = 0.

Неравновесное состояние системы – такое, при котором какой–либо из ее параметров состояния системы изменяется.

Равновесное состояние системы – такое, при котором все параметры состояния системы имеют определённые значения, постоянные при неизменных внешних условиях.

Время релаксации – время, в течение которого система приходит в равновесное состояние.

Процесс – переход системы из одного состояния в другое состояние, связанный с изменением хотя бы одного из ее параметров состояния:

а) обратимый процесс – процесс, при котором возможно осуществить обратный переход системы из конечного в начальное состояние через те же промежуточные состояния так, чтобы не осталось никаких изменений в окружающей систему среде;

б) необратимый процесс – процесс, при котором невозможно осуществить обратный переход системы в первоначальное состояние, или если по окончании процесса в окружающей среде или в самой системе произошли какие-либо изменения;

в) круговой процесс (цикл) – такая последовательность превращений, в результате которой система, выйдя из какого-либо исходного состояния, возвращается в него вновь. Любой круговой процесс состоит из процессов расширения и сжатия. Процесс расширения сопровождается работой, совершаемой системой, а процесс сжатия – работой, совершаемой над системой внешними силами. Разность этих работ равна работе данного цикла.

Динамические закономерности – закономерности, подчиняющиеся системам уравнений (в том числе дифференциальных, интегральных и др.), допускающих существование единственного решения для каждого начального условия.




double arrow
Сейчас читают про: