Режимы работы электроприводов. Динамический момент

В зависимости от изменения скорости электропривода, различают два режима его работы:

1. установившийсяили статическийрежим, при котором скорость не изменяется;

2. переходный или динамический режим, при котором скорость изменяется.

Переходный режим может возникнуть в таких случаях:

1. при изменении параметров двигателя, например, при регулировании скорости изменением сопротивления в цепи обмотки якоря;

2. при изменении параметров механизма, например, при изменении подачи насоса;

3. при изменении параметров судовой сети, например, при колебаниях напряжения.

В динамическом режиме, в дополнение к ранее рассмотренным электромагнитному моменту двигателя М и статическому моменту механизма М , на валу двигателя возникает дополнительный, так называемый динамический момент М .

Появление этого момента объясняется действием сил инерции всех без исключения движущихся частей электропривода. Например, в электроприводе лебедки динамический момент появляется вследствие инерции якоря электродвигателя, шестерней редуктора, грузового барабана и самого груза.

Динамический момент, возникающий под действием сил инерции, увеличивает время переходных процессов, например, время пуска и остановки электропривода.

Для уменьшения динамического момента в двигателях специального исполнения уменьшают диаметр ротора и одновременно, для сохранения мощности двигателя, увеличивают его длину. Такие двигатели применяют в электроприводах грузоподъемных механизмов. Их применение позволяет сократить время пуска и остановки электропривода, а значит, повысить производительность грузовых лебедок и кранов.

Серии таких электродвигателей называются крановыми (от грузового крана).

3. Механические характеристики электродвигателей

Механическая характеристика электродвигателя - это зависимость угловой скорости ЭД от момента на его валу: ω (М). У большинства ЭД (кроме синхронных) с увеличением нагрузки на валу угловая скорость уменьшается. Характер изменения угловой скорости дви­гателя с изменением момента сопротивления определяет жесткость механической характеристики. По степени жесткости различают механические характеристики трех видов (рис. 3): абсолютно жест­кие, жесткие и мягкие.

Абсолютно жесткие характеристики присущи синхронным дви­гателям (прямая 1). При изменяющемся моменте в пределах пере­грузочной способности угловая скорость этих ЭД не изменяется.

Жесткими характеристиками обладают ЭД постоянного тока параллельного возбуждения (наклонная прямая 2) и асинхронные электродвигатели в пределах рабочей части их характеристик (верхняя часть кривой 3). У этих ЭД при значительном изменении момента скорость изменяется в меньшей степени.

Мягкие характеристики свойственны ЭД постоянного тока по­следовательного (кривая 4), смешанного возбуждения (кривая 5) и


ЭД в системе Г-Д с противокомпаундной обмоткой. Механические характеристики этих ЭД таковы, что при небольшом изменении момента происходит значительное изменение их угловой скорости.

Степень жесткости механической характеристики является од­ним из основных электромеханических свойств ЭД.

Наряду с механическими характеристиками электромеханичес­кие свойства ЭД отражают также электромеханические характерис­тики, являющиеся одним из видов рабочих характеристик и пред­ставляющие собой зависимость угловой скорости ЭД от тока, протекающего по цепи его якоря или ротора: ω(I).

Механические и электромеханические характеристики ЭД разделяют на естествен­ные и искусственные.

Естественной характеристикой называется характеристика, со­ответствующая работе ЭД при номинальных параметрах питающей сети, нормальной схеме подключения к ней и при отсутствии добавочных сопротивлений в цепях электродвигателя.

Каждому ЭД присуща только одна естественная характеристика.

Искусственные характеристики получаются при питании ЭД от сети с напряжением или частотой, отличающимися от номинальных, или при включении в одну из цепей ЭД добавочного резистора, или если ЭД подключен к источнику тока, по необычной схеме.

Для каждого ЭД можно создать неограниченное количество искусствен­ных характеристик.

Работа на них происходит при пуске, регулиро­вании частоты вращения и торможении ЭД.

4.Механические характеристики механизмов

При рассмотрении работы ЭД, приводящего в движение ме­ханизм, необходимо также принимать во внимание механическую характеристику механизма, ибо от степени их соответствия зависят условия эксплуатации двигателя.

Механической характеристикой механизма называется зависи­мость создаваемого им приведенного статического момента от угловой скорости ЭД: М(ω)

По характеру этой зависимости большинство судовых механизмов можно разделить на две основ­ные группы (рис. 4):

1. Механизмы с не зависящим от угловой скорости статическим моментом (прямая 1). (крановая характеристика).

К этой группе механизмов от­носятся грузоподьемные лебедки, краны, лифты, поршневые насосы и компрессоры(рис 4).

2. Механизмы, у которых статический момент зависит от квадрата угловой скорости;

Механическая харак­теристика этих механизмов изображается в виде параболической кривой 2, не проходящей через начало координат. Их начальный статический момент обозначается через М0 и обусловлен трением в подшипниках и другими потерями.

К механизмам, обладающим такой характеристикой, называемой вентиляторной, относятся вентиляторы, центробежные насосы и гребные винты.

Сравнивая механические характеристики, нетрудно увидеть, что для механизмов с характеристикой 1 необходимы ЭД, способные

Рис, 5, Совмешенные механические характеристики механизмов и электродвигателя

развивать большой пусковой момент, а для механизмов с ха­рактеристикой 2 приводные ЭД могут развивать меньший момент.

Располагая механическими характеристиками ЭД и механизма, легко найти значение угловой скорости ЭД при установившемся режиме работы привода. Поскольку в этом режиме система при­вода находится в состоянии равновесия, т.е. М = Мс, очевидно, что установившаяся скорость будет определяться точкой пересечения механических характеристик. Например, для характеристики I дви­гателя (рис. 5. а) и характеристик 2 и 3 механизмов установившими­ся скоростями будут ωс2 и ωс3 Если же механические харак­теристики ЭД и механизма не пересекаются, то установившийся режим работы привода в таком случае невозможен. Следует иметь в виду, что не в любой точке пересечения характеристик работа ЭП может быть устойчивой. Например, на рис. 5,б механические характеристики ЭД и механизма пересекаются в точках установившегося режима ωс и (ωсштрих). Однако точка (ωсштрих) соот­ветствует неустойчивому установившемуся режиму. Положительный динамический момент при уменьшении скорости и отрицательный при ее возрастании обеспечит возврат системы привода в точку ωс.

Таким образом, вид механических характеристик ЭД и ме­ханизма существенно влияет на характер переходных процессов, и это необходимо принимать во внимание при эксплуатации ЭП.

3. Способы пуска, регулирования частоты вращения и торможения электроприводов постоянного тока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: