Рассмотрим на примере, как используются приведенные выше равносильности алгебры высказываний при решении содержательных задач

Задача: В замке есть две комнаты, в каждой из которых может находиться либо тигр, либо принцесса. На дверях комнат имеются таблички следующего содержания: табличка I - «По крайней мере в одной из комнат находится принцесса», табличка II – «Принцесса находится в другой комнате».

Если в первой комнате находится принцесса, то утверждение на табличке I истинно, если тигр – то ложно. Для второй комнаты наоборот, если там находится принцесса, то утверждение на табличке II ложно, а если там находится тигр – то это утверждение истинно. Определить, в какой из комнат находится принцесса.

Решение:

Введем обозначения для простых высказываний, необходимые для формализации условия задачи, обозначив соответственно через П1 высказывание «принцесса находится в первой комнате», через П2 - высказывание «принцесса находиться во второй комнате», тогда высказывание «тигр находится в первой комнате» есть отрицание переменной П1, а высказывание «тигр находится во второй комнате» - отрицание высказывания П2.

Тогда надпись на первой двери (обозначим это сложное суждение через А) можно представить в виде конъюнкции высказываний П1 и П2 (А=П1 П2), а надпись на второй двери (обозначим его через В) совпадает с высказыванием П1, т.е. В=П1.

Учитывая условие, что при нахождении в первой комнате принцессы утверждение на табличке I истинно, тигра – то ложно, а для второй комнаты при нахождении в ней принцессы утверждение на табличке II ложно, нахождения в ней тигра это утверждение истинно, получим в формализованном виде следующую запись условия нашей задачи:

(П1*А П1*А)*(П2*В П2*В)=

=(П1*(П1 П2) П1* (П1 П2))(П2*П1 П2*П1)=

= П1* П2.

1. П1*(П1 П2) П1* (П1 П2)= П1*П2 П1 П1* П1*П2=

= П1*П2 П1 П1*П2=П1 П2;

2. (П2*П1 П2*П1)* (П1 П2) =

= П2*П1*П1 П2*П1*П2 П2*П1*П1 П2*П1*П2=

= П1* П2.

Замечание: жирным шрифтом здесь отмечены нулевые конъюнкции, - знак операции дизъюнкция, * - знак операции конъюнкция, - знак операции отрицания.

С учетом введенных обозначений для переменных П1 и П2 (П1- «принцесса находится в первой комнате», П2 – «принцесса находится во второй комнате») и полученной в результате преобразований формуле П1* П2 можем сформулировать ответ на вопрос задачи – принцесса находится в первой комнате.

Примеры:

а) Проверьте равносильность двумя способами:

Первый способ проверки равносильностей - при помощи построения таблиц истинности ля левой и правой части формулы. Если истинностные значения в соответствующих столбцах совпадают при любых наборах значений составляющих простых суждений, то равносильность считается доказанной, в противном случае она не имеет места.

Составим таблицы истинности для левой и правой частей приведенной формулы (табл. 2, табл.3):

Таблица 2

А B C D А B 5+3 3D AB 6+7 9+6+8     6+11+12 13*10
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                                   

Сравнивая столбец 14 табл. 2 и столбец 7 табл. 3, видим, что истинностные значения для левой и правой частей исходной формулы различны (не совпадают для одних и тех же наборов значений входящих в нее составляющих простых высказываний), значит, данная формула не являет равносильностью алгебры высказываний.
Таблица 3

А B C D А B AB 3+4+5+6
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             

Второй способ проверки равносильностей алгебры логики- преобразование исходной формулы на основании известных. Ранее доказанных основных равносильностей алгебры высказываний.

Используем для доказательства метод приведения левой части фрмулы к правой:

1) ;

2) ;

3) ;

4) .

Так как левая часть в результате равносильных преобразований не эквивалентна правой, можно сделать вывод, о том, что данная формула не является равносильностью алгебры высказываний.

в) Найдите отрицание приведенного сложного высказывания:

Если урок будет интересным, никто из мальчиков — Петя, Ваня, Коля — не будет смотреть в окно;

Ведем обозначения для простых суждений, входящих в состав приведенного сложного суждения и воспользуемся общим правилом отрицания сложных суждений. Пусть П - суждение «Петя посмотрит в окно», В - суждение «Ваня посмотрит в окно», К - суждение «Коля посмотрит в окно», И – «урок будет интересным». Тогда, формализуя исходное сложное суждение и учитывая, что нужно найти его отрицание, получим:

(И→ ПВК)↔ И*(П+В+Л)

Следовательно, отрицание исходного сложного суждения можно сформулировать в виде: «Урок будет интересным, но хотя бы один их мальчиков (Петя, Ваня, Коля) будет смотреть в окно».



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: