х̅в=
∑xi
х̅в=
∑xini
выборочная средняя – среднее взвешенное знач признака с весами = соотв частотам.\
Оценка генеральной средней хг по выборочной средней хв
Из генеральной совокупности извлечена повторная выборка объема n:
…
– знач признака - различны.
хг – неизв. Требуется оценить ее по данным выборки.
В качестве оценки хг принимается хв =
1) убедимся, что хв – несмещенная оценка, те есть M[хв] = хг
Хв – СВ;
…
– независ слу распределения СВ Х1….Хn, т.к. эти величины одинаково распределены à у них одинаковое мат ожидание, например М(Х)=α
М(Хв)=М(
) = α
Величины х1…хn имеют то же распределение, что и генеральная совокупность => у них одинаковые мат ожидания.
М(Х)= Хг = α => М(Хв)= Хг => Хв – несмещенная оценка Хг (Чтд)
2) Хв- состоятельная оценка Хг
Т.к. СВ
…
имеют огранич дисперсии, то по теореме Чебышева (при ↑n => среднее арифметическое р-мых величин (то есть Хв) стремится по вероятности в мат ожиданию (=α) каждой из величин (или к Хг, т.к. Хг=α)).
=> при ↑n Хв àстремиться по вероятностиà Хг
3) если СВ Х подчиняется НЗР, то => эффективная оценка
Если генеральная средняя неизвестна и требуется оценить ее по данным выборки, то в качестве оценки генеральной средней принимают выборочную среднюю, которая является несмещенной и состоятельной оценкой. Отсюда следует, что если по нескольким выборкам достаточно большого объема из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближенно равны между собой.
Несмещенной называют статистическую оценку
, математическое ожидание которой равно оцениваемому параметру
, то есть 
Состоятельной называют статистическую оценку, которая при
стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при
стремится к нулю, то такая оценка оказывается также состоятельной.
4. Генеральная и выборочные дисперсии. Оценка генеральной дисперсии по выборочной.Асимптотические свойства оценок.
Генеральная дисперсия – среднее арифметическое кв-тов отклонений знач признака генеральн совокупности от их среднего знач Хг.
Если
…
- знач признака различны, Dг =
∑(xi-x̅г)2
Если
…
имеют соотв частоты N1….Nk, Dг =
∑(xi-x̅г)2*Ni
Т.е. Генеральная дисперсия – среднее взвешенное квадратов отклонений с весами = соотв частотам.
Выборочная дисперсия – среднее арифметическое кв-тов отклонений знач признака генеральн совокупности от их среднего знач Хв.
Если
…
- знач признака различны, Dв =
∑(xi-x̅в)2
Если
…
имеют соотв частоты n1….nk, Dв =
∑(xi-x̅в)2*ni
Т.е. Выборочная дисперсия – среднее взвешенное квадратов отклонений с весами = соотв частотам.
Оценка Dг по Dв
Смещенной оценкой Dг служит Dв
Dв =
∑ni(xi-x̅в)2 - это оценка смещенная, т.к. М(Dв)≠Dг. М(Dв) = Dг * 
Несмещенная оценка Dг служит S2 (исправленная выборочная дисперсия).
S2 =
* Dв = (∑ni(xi-x̅в)2)* 
S2 используется при n<30
Она несмещенная т.к. М(S2) = Dг
Оценки максимального правдоподобия могут быть асимптотически эффективными и асимптотически нормальными оценками. Асимптотическая нормальность означает, что
где
асимптотическая информационная матрица. Асимптотическая эффективность означает, что асимптотическая ковариационная матрица
является нижней границей для всех состоятельных асимптотически нормальных оценок.