А.2.Коррекция апертурных искажений

Апертурные искажения вызывают уменьшение амплитуды сигнала мелких деталей изображения и растягивание резких перепадов яркости. Таким образом, апертур­ные искажения сходны с искажениями видеосигнала, вызываемы­ми спадом частотной характеристики видеотракта в области верх­них частот. Имеется, однако, существенное отличие, которое при­водит к необходимости применения специальных схем коррекции апертурных искажений. В видеоусилителях частотные искажения обычно сопровождаются фазовыми. Апертурные искажения, если они вызываются лучом с симметричной формой поперечного сечения, не сопровождаются фазовыми сдвигами отдельных спектраль­ных компонент. Эта особенность апертурных искажений поясняет­ся на рис. 2.13,а и б. При развертке изображения белой верти­кальной полосы на черном фоне симметричным лучом с диамет­ром dл импульс видеосигнала также симметричен относительно вертикальной оси, т. е. является функцией четной, и последовательность таких импульсов может быть представлена рядом Фурье, со­держащим только косинусоидальные составляющие. Соответствен­но апертурная характеристика должна аппроксимироваться чет­ной функцией.


Апертурные корректоры выполняются по двум распространен­ным схемам. Одна из «них основана на применении дифференциру­ющих цепей. Сущность метода дифференциальной апертурной коррекции заключается в следующем.

Рис. 2.13. Образование сигнала при симметричной форме считываю­щего луча: а) передаваемое изображение; б) форма видеосигнала; в) аппроксимирующая функция

Апертурная характеристика аппроксимируется следующей четной функцией:

, (2.11)

где — частота, при которой амплитуда сигнала уменьшается в е раз (е — основание натуральных логарифмов). Графически функ­ция (2.11) изображена на рис. 2.13,в. Выражение (2.11) может быть представлено в виде:

, (2.12)

где , , и т.д.

Корректирующее устройство должно иметь обратную частотную характеристику вида

(2.13)

Дифференциальная апертурная коррекция сводится к синтезу частотной характеристики, описываемой выражением (2.13). Как видно из (2.13), общая частотная характеристика может быть представлена как сумма частотных характеристик , и т. д. Характеристики такого типа могут быть получены при помощи обычных дифференцирующих цепей. Частотная харак­теристика однозвенной дифференцирующей цепи (рис. 2.13,а) опре­деляется выражением:

, (2.14)

При соответствующем выборе постоянной времени RC выпол­няется следующее неравенство ω RC << 1

, (2.15)

Фазовая характеристика:

, (2.16)

При выполнении неравенства ω RC << 1 получим .

Ча­стотная и фазовая характеристики однозвенной дифференцирующей цепи изображены на рис. 2.14б и в.


Можно показать, что при последовательном соединении двух дифференцирующих цепей частотная характеристика будет опре­деляться соотношением , а четырех —

Рис 2.14 Дифференцирующая цепь: а) принципиальная схема, б) частотная характеристика, в) фазовая характе­ристика.

Фазовый сдвиг, равный для однозвенной цепи π/2, для двух по­следовательно соединенных цепей составит π, а для четырех це­пей 2π.

На практике обычно используются более сложные дифферен­цирующие цепи, обеспечивающие за счет применения дополни­тельных элементов больший коэффициент передачи при сохранении линейной фазовой характеристики. Применяются также цепи двой­ного дифференцирования, позволяющие получить сразу сигнал второй производной.

Структурная схема апертурного корректора дифференциально­го типа представлена на рис. 2.15. Здесь корректирование частот­ной характеристики осуществляется добавлением к основному сиг­налу сигналов второй и четвертой производных. Суммирование корректирующих сигналов с основным осуществляется в суммато­рах и . В цепь формирования сигнала второй производной включен фазоинвертор, что необходимо, поскольку двухзвенная дифференцирующая цепь изменяет фазу входного сигнала на .


Рис.2.15. Структурная схема апертурного корректора дифференциального типа.

Линии задержки JI3-1 и Л3-2 используются для временного согла­сования основного и корректирующего сигналов в том случае, если вместо простейших дифференцирующих цепей применяются более сложные цепи, вносящие задержку дифференцированного сигнала относительно основного.

На практике для упрощения схемы часто ограничиваются фор­мированием только второй производной сигнала.

На рис. 2.16 показана простая схема дифференциальной апертурной коррекции с применением корректирующего сигнала второй производной. Сигнал поступает на входы двух транзисторов — T 1 и Т 2 через разделительный кон­денсатор C 1. В анодную цель T 1 включен контур C 3 L 4, настроенный на верхнюю граничную частоту и играющий роль цепи двойного дифференцирования. Действи­тельно, при настройке контура на верхнюю граничную частоту его частотная характеристика (на частотах ниже граничной) близка по форме к квадратичной параболе, что и позволяет получить вторую производную сигнала. Основ­ной сигнал поступает на выход с нагрузки эмиттерного повторите­ля через индуктивность L 4.

Рис.2.16. Принципиальная схема дифференциального апертурного корректора.

Необходимая полярность корректирующего сигнала обеспечивается транзистором Т 1, выполняющим также функции фазоинвертора. Резистор R9 предотвращает подъем частотной характеристики за счет образования колебательного контура, состоящего из индук­тивности L4 и входной емкости следующего каскада.

2.2.3. Яркость телевизионного изображения [7]

Для спокойного, не утомительного наблюдения ТВ изображения необходимо, чтобы оно обладало достаточной яркостью. Недостаточная яркость, так же как и чрезмерно большая, будет плохо восприниматься телезрителем. В случае малой яркости зритель будет невольно с напряжением всматриваться в изображение на экране, что быстро приведет его к утомлению. Чрезмерно большая, слепящая яркость также быстро утомляет зрителя.

Многолетний опыт показывает, что как в кино, так и в ТВ надо считать нормальным на белых участках изображения яркости порядка 40 – 80 кд /м2. В темном же помещении окажется достаточной яркость в 20 кд /м2. Следует иметь в виду, что большая яркость экрана в тщательно затемненном помещении вызывает неприятное ощущение «зияющего окна» (яркий прямоугольник на черном фоне). Гораздо мягче и спокойнее выглядит изображение в окружении небольшой внешней подсветки.

Видимая яркость ТВ экрана, являющегося мелькающим источником света, при частоте этих мельканий выше критической определяется как средняя величина за один цикл: (2.17)

где В виз – визуальная (видимая глазом) яркость экрана; Т – период следования световых импульсов. Равный в нашем случае периоду кадра; В(t) – мгновенное и истинное значение яркости элемента изображения в каждый момент времени. Зависимость (2.17) носит название закона Тальбота.

Для пояснения смысла формулы (2.17) обратимся к графику на рис. 2.17., на котором с некоторой идеализацией показаны импульсы яркости какого - либо одного элемента изображения. Когда при развертке экрана кинескопа электронный луч попадает на данный элемент, возникает свечение В (t), за время передачи этого элемента Т эл достигающее максимального значения яркости Вm. После того как электронный луч покинет данный элемент, его свечение будет падать приблизительно по экспоненциальному закону:

(2.18)

       
 
   
Рис. 2.17. К определению визуальной яркости экрана кинескопа
 


Определим для этого случая связь между максимальной (импульсной) яркостью Вm и ее средним (визуальным) значением В виз. С этой целью воспользуемся формулой Тальбота:

(2.19)

где t - постоянная времени послесвечения экрана; Т к – период передачи одного кадра (ничтожно малым интервалом Т эл» Т к / 500000 для простоты расчетов пренебрегаем).

Избыточное время послесвечения может привести к некоторому «размазыванию» передаваемых движущихся изображений. Следует считать допустимым, если за период кадровой развертки остаточная яркость послесвечения будет составлять не более 5 – 10 % от начальной. В этом случае, из выражения (2.17) (0,05 ¸ 0.1) Вm = Вm е-Тк/t, откуда Т к /t =3 ¸ 2,3.

Подставляя эти значения в (2.19), получим Вm = (2,6 ¸ 3,2) В виз, в среднем Вm» 3 В виз. При яркости ТВ-экрана В виз = 40 кд/м2 максимальное значение яркости (под лучом) составит Вm = 120 кд/м2.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: