Решение. а) Приращение функции ∆у = f(x + ∆x) – f(x) = f(2 + ∆x) – f(2) = ((2 + ∆x)2 + (2 + ∆x) + 1) – (22 + 2 + 1) = 5∆x +

а) Приращение функции ∆ у = f (x + ∆ x) – f (x) = f (2 + ∆ x) – f (2) = ((2 + ∆ x)2 + (2 + ∆ x) + 1) – (22 + 2 + 1) = 5∆ x + ∆ x 2. Выделяя линейную относительно ∆ x часть приращения функции, получаем, что dy = 5∆ x = 5 dx.

б) Дифференциал функции dy = (x 2 + x + 1)′ dx = (2x + 1) dx = (2∙2 + 1) dx = 5 dx.

9.2. Найти 1,0050,5; 1,035.

Решение. Получим вначале приближенную формулу для вычисления любой n -й степени. Полагая f (x) = xn, найдем f ′(x) = nxn -1 и в соответствии с (9.6):

(x + ∆ x) nxn + nxn -1x. В данном примере для x = 1:

1,0050,5 ≈ 1 + 0,5∙0,005 = 1,0025; 1,035 ≈ 1 + 5∙0,03 = 1,15.

9.3. Использую понятие дифференциала, вычислить приближенно arcsin 0,51.

Решение. Рассмотрим функцию y = arcsin x. Полагая x = 0,5, ∆ x = 0,01 и применяя формулу (9.6), имеем:

arcsin(x + ∆ x) ≈ arcsin x + (arcsin x)′ ∆ x = arcsin x + .

Следовательно,

arcsin 0,51 ≈ arcsin 0,5 +

9.4. С какой точностью может быть вычислен объем шара, если его радиус измерен с точностью до 1%?

Решение. Объем шара радиуса x равен f (x) = (4/3) πx 3. Найдем f′ (x) = 4 πx2, и по формуле (9.7) .

9.5. Найти количество лет, в течение которых первоначальная сумма вклада увеличится в два раза, если ставка банковского процента (за год) равна r.

Решение. Найдем количество лет T, в течение которых первоначальная сумма вклада увеличится в два раза. Так как за год вклад увеличивается в (1 + r /100) раз, то за T лет вклад увеличится в (1 + r /100) T раз. Таким образом, необходимо решить уравнение (1 + x /100) T = 2. Логарифмируя, получаем T ln(1 + r /100) = ln2, откуда T = .

Для приближенного вычисления значения ln(1 + r /100) используем понятие дифференциала. Получим вначале приближенную формулу для вычислении ln x. Полагая

f (x)= ln x, найдем f′ (x) = 1/ x и в соответствии с (9.6) ln(x + ∆ x) ≈ . В данном примере для x = 1, ∆ x = r /100 получим ln(1 + r /100) = ln1 + r /100 = r /100. Таким образом T ≈ 100 ln(2/ r). Так как ln2 ≈ 0,7, получаем, что время удвоения вклада T ≈ 70/ r (лет).

9.6. Найти dy и d 2 y, если y = .

Решение: ; .

Найти приращения функций и их дифференциалы и вычислить их значения при заданных x и ∆ x:

9.7. 9.8.

9.9.

Найти дифференциалы первого порядка функций и вычислить их значения при заданных x и ∆ x:

9.10. 9.11.

9.12.

Найти дифференциалы первого порядка функций:


9.13. 9.14. 9.15.

9.16. 9.17. 9.18.

9.19. 9.20. 9.21.

9.22. 9.23. 9.24.

9.25. 9.26. 9.27.

9.28. 9.29. 9.30.

9.31. 9.32.


Найти дифференциалы второго порядка функций:


9.33. 9.34. 9.35.

9.36. 9.37. 9.38.

9.39. 9.40.


Используя понятие дифференциала, приближенно вычислить:

9.41. е 0,2. 9.42. ln 1,02. 9.43. 170,25.

9.44. arcsin 0,54. 9.45. 1.021/3. 9.46. cos 151o.

9.47. sin 29o. 9.48. arctg 1,05. 9.49. lg 11.

9.50. Показать, что относительная погрешность в 1% при определении длины радиуса влечет за собой относительную погрешность приблизительно в 2% при вычислении площади круга и поверхности шара.

9.51. Найти время удвоения вклада в банк, если ставка банковского процента за год составляет 5% годовых.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: