function kinematik
R1 = 0.953; R2 = 0.847; R3 = 0.457; Vd = 0.304; dt = 0.057; Tc = 0.297;
delta = 0.01; fi10 = 1.63; fi20 = 3.37; fi30 = 2.87;
Xd0 = -2.15; Yd0 = 1.18; alf = 4.35;
Xd = Xd0; Yd = Yd0; fi1 = fi10; fi2 = fi20; fi3 = fi30;
[Xm0,Ym0] = get_Xm_Ym(R1,R2,R3,fi10,fi20,fi30);
Xm = Xm0; Ym = Ym0; Vdx = Vd*cos(alf); Vdy = Vd*sin(alf); dR = 1; i=1; t=0;
while (dR > delta),
[Vmx,Vmy] = get_Vmx_Vmy(Xm,Ym,Xd0,Yd0,Vdx,Vdy,Tc,t);
[w1,w2,w3,Vcx] = get_w1_w2_w3_Vcx(R1,R2,R3,fi1,fi2,fi3,Vmx,Vmy);
XmV(i) = Xm; YmV(i) = Ym; XdV(i) = Xd; YdV(i) = Yd;
VcxV(i) = Vcx; VmxV(i) = Vmx; VmyV(i) = Vmy;
tV(i) = t; w1V(i) = w1; w2V(i) = w2; w3V(i) = w3;
fi1V(i) = fi1; fi2V(i) = fi2; fi3V(i) = fi3;
Xm = Xm + Vmx*dt; Ym = Ym + Vmy*dt; Xd = Xd + Vdx*dt; Yd = Yd + Vdy*dt;
fi1 = fi1 + w1*dt; fi2 = fi2 + w2*dt; fi3 = fi3 + w3*dt;
t = t + dt; i=i+1; dR = sqrt((Xm - Xd)^2+(Ym - Yd)^2);
end;
plot(tV,VcxV,'k'); plot(tV,w1V,'k--',tV,fi1V,'k');
plot(tV,w2V,'k--',tV,fi2V,'k'); plot(tV,w3V,'k--',tV,fi3V,'k');
plot(XmV,YmV,'k:',XdV,YdV,'k-.',Xd0,Yd0,'kv',XmV(1),YmV(1),'ko',
XmV(length(YmV)),YmV(length(YmV)),'ko',XdV(length(XdV)),YdV(length(XdV)),'kv');
function [Xm, Ym] = get_Xm_Ym(R1,R2,R3,fi1,fi2,fi3)
Xm = R1*cos(fi1) + R2*cos(fi2) + 2*R3*cos(fi3);
Ym = R1*sin(fi1) + R2*sin(fi2) + 2*R3*sin(fi3);
function [Vmx,Vmy] = get_Vmx_Vmy(Xm,Ym,Xd0,Yd0,Vdx,Vdy,Tc,t)
Vmx = Vdx + (Xd0 + Vdx*t - Xm)/Tc;
Vmy = Vdy + (Yd0 + Vdy*t - Ym)/Tc;
function [w1,w2,w3,Vcx] = get_w1_w2_w3_Vcx(r1,r2,r3,fi1,fi2,fi3,Vmx,Vmy)
w3 = Vmy/(r3*(2*cos(fi3) + sin(fi3)));
Vcx = Vmx + w3*r3*(2*sin(fi3) - cos(fi3));
w1 = (Vcx*cos(fi2) + w3*r3*cos(fi3-fi2))/(r1*sin(fi2-fi1));
w2 = (w3*r3*sin(fi3) - w1*r1*cos(fi1))/(r2*cos(fi2));
ЛИТЕРАТУРА
Основная
1. Промышленная робототехника / Л.С.Ямпольский, В.А. Якимович, Е.Г. Вайсман и др.; Под. ред. Л.С.Ямпольского. – Киев: Техника, 1984.
2. Робототехника и гибкие автоматизированные производства/ Под. ред. И.М. Макарова. Кн.3. Управление робототехническими системами и ГАП. – М.: ВШ, 1986.
3. Медведев В.С., Лесков А.Г., Ющенко А.С. Системы управления манипуляционными роботами. – М.: Наука, 1978.
Дополнительная
4. Яблонский А.А., Никифорова В.М. Курс теоретической механики. – Ч.I,: М.: Наука, 1984.
5. Васильева А.В., Бутузов В.Ф. Асимптотическое разложение решений сингулярно-возмущенных уравнений.- М.: Наука, 1973.
Приложение 1
Вариант | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
0.82 | 0.68 | 0.46 | 2.9 | 1.1 | 0.5 | 0.508 | -0.15 | 1.85 | 0.011 | |
0.81 | 0.47 | 0.91 | 1.3 | 2.2 | 3.6 | 0.308 | -0.94 | 1.71 | 0.012 | |
0.43 | 0.91 | 0.84 | 0.3 | 3.8 | 4.2 | 0.512 | -0.42 | 0.25 | 0.013 | |
0.42 | 0.97 | 0.88 | 2.8 | 0.2 | 5.7 | 0.462 | -0.21 | 1.22 | 0.014 | |
0.78 | 0.45 | 0.81 | 1.7 | 0.1 | 5.8 | 0.385 | 1.35 | 1.51 | 0.015 | |
0.71 | 0.89 | 0.76 | 4.6 | 0.1 | 1.6 | 0.312 | 1.33 | -1.20 | 0.016 | |
0.46 | 0.97 | 0.74 | 1.3 | 4.3 | 5.6 | 0.421 | -0.61 | -0.24 | 0.017 | |
0.81 | 0.72 | 0.48 | 1.1 | 3.0 | 3.3 | 0.472 | -1.38 | 1.61 | 0.018 | |
0.76 | 0.79 | 0.45 | 0.3 | 2.4 | 1.8 | 0.465 | 0.54 | 1.02 | 0.019 | |
0.72 | 0.49 | 0.78 | 0.5 | 4.2 | 3.6 | 0.375 | 1.61 | -0.55 | 0.020 | |
0.83 | 0.57 | 0.49 | 0.5 | 1.6 | 3.0 | 0.525 | -0.92 | 1.78 | 0.021 | |
0.68 | 0.46 | 0.83 | 3.9 | 4.9 | 0.3 | 0.310 | 0.46 | -2.04 | 0.022 | |
0.78 | 0.85 | 0.49 | 2.1 | 1.0 | 0.1 | 0.460 | 0.51 | 1.65 | 0.023 | |
0.48 | 0.97 | 0.73 | 0.3 | 1.8 | 3.7 | 0.402 | 0.26 | 1.30 | 0.024 | |
0.42 | 0.97 | 0.78 | 0.3 | 2.9 | 0.4 | 0.455 | 0.45 | 1.12 | 0.025 | |
0.51 | 0.82 | 0.79 | 3.2 | 4.1 | 3.0 | 0.288 | -1.57 | 0.13 | 0.026 | |
0.41 | 0.83 | 0.98 | 2.0 | 4.3 | 1.4 | 0.451 | -1.18 | 0.56 | 0.027 | |
0.82 | 0.45 | 0.78 | 1.6 | 2.9 | 0.4 | 0.312 | -0.99 | 0.52 | 0.028 | |
0.92 | 0.98 | 0.81 | 1.5 | 2.7 | 1.7 | 0.294 | -1.43 | 1.95 | 0.029 | |
0.79 | 0.68 | 0.48 | 4.1 | 5.8 | 1.1 | 0.306 | 0.41 | -1.43 | 0.030 | |
0.76 | 0.42 | 0.85 | 5.2 | 0.4 | 2.3 | 0.380 | 0.84 | 0.26 | 0.031 | |
0.75 | 0.78 | 0.47 | 1.1 | 2.8 | 2.0 | 0.515 | -1.66 | 0.42 | 0.032 | |
0.71 | 0.49 | 0.82 | 4.9 | 0.1 | 1.9 | 0.385 | 0.62 | 0.12 | 0.033 | |
0.75 | 0.6 | 0.78 | 0.3 | 1.9 | 0.1 | 0.398 | 1.11 | 1.32 | 0.034 | |
0.68 | 0.79 | 0.82 | 2.3 | 0.7 | 0.5 | 0.392 | 1.40 | 1.67 | 0.035 | |
0.81 | 0.72 | 0.49 | 3.7 | 5.4 | 4.2 | 0.371 | 0.13 | -1.98 | 0.036 | |
0.78 | 0.65 | 0.48 | 1.6 | 0.1 | 1.5 | 0.275 | 0.31 | 1.62 | 0.037 | |
0.45 | 0.97 | 0.78 | 0.9 | 0.5 | 3.9 | 0.290 | 1.22 | 0.78 | 0.038 | |
0.49 | 0.98 | 0.77 | 2.1 | 0.4 | 3.7 | 0.305 | 0.21 | 0.72 | 0.039 | |
0.72 | 0.75 | 0.49 | 3.9 | 5.4 | 0.3 | 0.340 | 1.14 | -1.25 | 0.040 |
Приложение 2
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
![]() | ![]() | ![]() | ||||||||||||
Приложение 3