Задачи биостатистики

Ниже приведены наиболее распространенные определения статистики вообще, и биостатистики в частности.

Статистика – отрасль знаний (наука), изучающая методы сбора, систематизации, обработки и интерпретации результатов наблюдений с целью выявления статистических закономерностей.

Биостатистика (биометрика) – отрасль знаний, связанная с разработкой и использованием статистических методов в научных исследованиях в медицине, здравоохранении и эпидемиологии.

Чтобы вникнуть в суть этих определений выясним, в чем была необходимость появления биостатистики, какие задачи она решает?


В своей практической деятельности врач, как правило, имеет дело с одним пациентом (в дальнейшем будем использовать термин биообъект), измеряет какие-то показатели его здоровья (признаки), ставит диагноз и назначает лечение. Это единичное явление, отдельный акт. Например, измерив рост одного человека, мы сразу делаем вывод: высокий, среднего роста он или низкорослый. А как поступить, если нам надо описать группу людей, учитывая, что они все разного роста (рисунок 1).

Рисунок 1. Пример группового свойства

Хср=178 см
Хср=178 см

Первое, что приходит на ум – это определить средний рост. Теперь задумайтесь, а что это нам дает, какую информацию о росте людей в данной группе несет среднее значение. Многих такой вопрос ставит в тупик. Давайте обратимся к рисунку 2.

Рисунок 2. Сравнение групповых свойств

Из него видно, что при равенстве средних значений рост людей в двух группах значительно разница. Отсюда можно сделать вывод, что для их сравнения одних только средних недостаточно. По-видимому, нужны еще какие-то показатели.

Когда на автомобильном предприятии выпускают партию машин одной модели можно однозначно охарактеризовать объем двигателей этих машин, например, 1500 см3. Так нельзя поступить в случае биологических объектов в связи с тем, что они весьма изменчивы, обладают индивидуальными свойствами. Как говорят: нет двух одинаковых людей, как и нет двух одинаковых болезней.

Еще один пример приведен на рисунке 3. Это результаты измерения артериального давления до и после приема некоторого гипотензивного препарата. В исследовании приняли участие две группы.

BR AQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEACn+cB94AAAAJAQAADwAAAAAAAAAAAAAAAABQ AgAAZHJzL2Rvd25yZXYueG1sUEsBAi0AFAAGAAgAAAAhAKwYmfsEAQAALQIAAA4AAAAAAAAAAAAA AAAAWwMAAGRycy9lMm9Eb2MueG1sUEsBAi0AFAAGAAgAAAAhAKsWzUa5AAAAIgEAABkAAAAAAAAA AAAAAAAAiwQAAGRycy9fcmVscy9lMm9Eb2MueG1sLnJlbHNQSwECLQAUAAYACAAAACEAS7pFAvoA AABoAQAAIAAAAAAAAAAAAAAAAAB7BQAAZHJzL2NoYXJ0cy9fcmVscy9jaGFydDEueG1sLnJlbHNQ SwECLQAUAAYACAAAACEAwHv/QQoGAABsEwAAFQAAAAAAAAAAAAAAAACzBgAAZHJzL2NoYXJ0cy9j aGFydDEueG1sUEsFBgAAAAAHAAcAywEAAPAMAAAAAA== ">
Рисунок 3. Изменение артериального давления после приема препарата

Задача состоит в том, чтобы определить, насколько эффективен препарат, ведь реакции были неоднозначны: у кого-то снижение было значительным, у кого- то - незначительным, а есть и такие у кого АД повысилось. И еще одно - в какой из двух групп эффект был более выраженным? Стоит ли такой препарат производить и назначать гипертоникам? Подобные проблемы решаются на основе статистического анализа множественных наблюдений.

Обобщая вышесказанное, мы можем сформулировать первую задачу биостатистики - анализ групповых свойств и массовых явлений в биологической среде. Этому вопросу посвящен раздел статистики называемый описательной статистикой.

Теперь перейдем ко второй задаче биостатистики. Предположим, что в предыдущем примере с гипотензивным препаратом, испытанном на 7 больных, вы сделали вывод о его эффективности. Можем ли мы на этом основании предложить его для массового выпуска, будет ли он помогать и другим, тысячам, страдающим повышенным артериальным давлением? Наверное, многие ответят нет, не можем. Что же в таком случае делать, как проверить это средство, ведь как бы мы не увеличивали количество привлеченных к испытаниям лиц, все равно не сможем охватить всю совокупность гипертоников земного шара (в статистике используют термин генеральная совокупность). А ведь только это нас и интересует, а не результаты какого-то отдельного (выборочного) исследования, ведь мы предполагаем назначать препарат повсеместно. Статистические методы позволяют перенести результаты выборочных исследований на всю генеральную совокупность объектов, но с учетом, что есть вероятность ошибочности нашего утверждения. И если эта вероятность невелика, то мы принимаем сделанные выводы, в противном случае – отвергаем. Вопрос о том велика или невелика ошибка решает сам исследователь, исходя из сути решаемой проблемы. Например, я утверждаю, что данный препарат эффективен во всей генеральной совокупности, при этом вероятность ошибки составляет 0,05 (т.е. 5 %) и это меня вполне устраивает. Возможно, у кого-то другого более жесткие требования и он удовлетвориться только вероятностью ошибки не более 0,01 (1%).

Следующий случай продемонстрирует нам, к каким последствиям может привести незнание законов статистики и неумение ими пользоваться. Случай этот выдуманный, но весьма показательный. Фармкомпания разработала лекарственное средство, позволяющее повысить уровень гемоглобина, и испытало его на выборке из 5 человек. Результаты, приведенные на графике 4А, позволяют говорить о высокой его эффективности, ведь чем выше доза препарата, тем выше уровень Hb.



Рисунок 4. Результаты испытания препарата на выборках различного объема

На основании этих данных было налажено массовое производство, вложены значительные финансовые и людские ресурсы. Однако, время показало, что препарат залежался на складах и его не назначают врачи. Озадачившись, ученые провели повторное, более массовое испытание и вот, что оно дало – одна и та же доза может быть эффективной для одних лиц и неэффективной для других (рисунок 4Б). Отнеся результаты выборочных исследований на всю генеральную совокупность, исследователи не оценили вероятность ошибки полученных результатов, а она была, по-видимому, значительной, т.е. полученная эффективность носила случайный характер.

Таким образом, мы фактически сформулировали вторую задачу биостатистики. Смысл ее в принятии наиболее обоснованного суждения относительно свойств и характеристик генеральной совокупности с опорой на результаты изучения выборки. Эта задача рассматривается в разделе, называемом теорией проверки статистических гипотез.

Статистические методы позволяют также решать задачи выявления взаимозависимостей между признаками, изучения динамики состояния биообъектов во времени, задачи классификации и прогнозирования.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: