Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Авторегрессионные интегрированные модели скользящей средней




Авторегрессионные интегрированные модели скользящей средней (ARIMA) отличаются от моделей ARMA тем, что перед их построением определяется порядок разности между уровнями временного ряда для получения в случае необходимости стационарного ряда. Процесс, порождаемый моделями ARIMA,характеризуется тремя параметрами: p – порядок авторегрессии; d – порядок предварительно определяемых разностей; q – порядок скользящей средней в модели. Таким образом, ARIMA,включая в себя описания процессов авторегрессии, скользящего среднего и интегрирования, является обобщением, позволяющим многие динамические процессы рассматривать как процессы ARIMA.

При построении моделей ARIMA очень важно в моделируемом временном ряде выделить эти три составляющие для того, чтобы определить структуру моделируемого процесса. С этой целью построение модели осуществляют в несколько этапов. На первом этапе ведется расчет разностей для получения стационарного ряда. Затем для полученного стационарного ряда пытаются построить модельARMA. Фактически выделение этих составляющих позволяет разбить все динамические ряды на классы со специфическими свойствами.

Например, рассмотрим абсолютно случайный процесс, в котором зависит только от среднего уровня ряда и ошибки, т.е.

, (4.9)

где (independent identically distributed) независимые, одинаково распределенные с нулевым средним и дисперсией ошибки.

В этом процессе не наблюдается зависимость от прошлых значений , в нем не фигурируют разности , и нет зависимости от ошибок в прошлых периодах. Поэтому этот процесс классифицируется как процесс ARIMA(0, 0, 0).

Если процесс состоит только из авторегрессионной составляющей, то его модель может быть записана следующим образом:

, , (4.10)

где и – случайная составляющая.

Рассматриваемый процесс фактически является AR(1) процессом и классифицируется как процесс ARIMA(1, 0, 0).

В случае, когда , процесс не является стационарным и только с помощью вычисления разностей может быть полностью трансформирован в стационарный. Модель такого процесса представима в виде

, , (4.11)

а сам процесс классифицируется как ARIMA(0, 1, 0).

Если единственной составляющей процесса является скользящая средняя, то мы имеем дело с процессом ARIMA(0, 0, 1), модель которого отражает зависимость от значений ошибки и записывается в виде:

, . (4.12)

В случае, когда процесс комбинируется из авторегрессионной составляющей и скользящей средней, его модель записывается следующим образом:

, (4.13)

и классифицируется как ARIMA(1, 0, 1).





Дата добавления: 2015-04-08; просмотров: 638; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8750 - | 7486 - или читать все...

Читайте также:

  1. I. Рассчитайте матрицу парных коэффициентов корреляции и отберите информативные факторы в модели. Укажите коллинеарные факторы
  2. II. Построение однофакторной модели взаимосвязи. Определение формы корреляционного уравнения
  3. II. Системы или модели (виды) бухгалтерского учета
  4. Legend('экспериментальные данные', 'нечеткое моделирование')
  5. V.3. Традиционные модели управления Пути преодоления недостатков в сфере муниципального управления в условиях Республики Коми
  6. V.4 Функциональное управление на муниципальном уровне. Принципы формирования новой модели управления
  7. VII Прогнозирование, проектирование и моделирование
  8. XML хранилище модели
  9. Автокорреляция остатков регрессионной модели
  10. Автоматические (базовые) и сознательно-контролируемые (стратегические) процессы. Их взаимодействие в модели Р. Шифрина и У. Шнейдера
  11. Автоматное моделирование алгоритмов


 

34.204.189.171 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.