Плейотропное действие гена. Первичная и вторичная плейотропия. Летальные гены. Примеры

Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена.

У дрозофилы ген белого цвета глаз одновременно влияет на цвет тела, длины, крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известна наследственная болезнь - арахнодактилия ("паучьи пальцы"-очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на развитие нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.

Плейотропное действие гена может быть первичным и вторичным.

При первичной плейотропии ген проявляет свой множественный эффект. Например, при болезни Хартнупа мутация гена приводит к нарушению всасывания аминокислоты триптофана в кишечнике и его реабсорбции в почечных канальцах. При этом поражаются одновременно мембраны эпителиальных клеток кишечника и почечных канальцев с расстройствами пищеварительной и выделительной систем.

При вторичной плейотропии есть один первичный фенотипический проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. Так, при серповидно-клеточной анемии у гомозигот наблюдается несколько патологических признаков: анемия, увеличенная селезенка, поражение кожи, сердца, почек и мозга. Поэтому гомозиготы с геном серповидно клеточной анемии гибнут, как правило, в детском возрасте.

Все эти фенотипные проявления гена составляют иерархию вторичных проявлений. Первопричиной, непосредственным фенотипиеским проявлением дефектного гена является аномальный гемоглобин и эритроциты серповидной формы. Вследствие этого происходят последовательно другие патологические процессы: слипание и разрушение эритроцитов, анемия, дефекты в почках, сердце, мозге - эти патологические признаки вторичны.

При плейотропии, ген, воздействуя на какой то один основной признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых "основным" геном.

Летальные гены (также летали, более точно — летальные аллели) — гены, как правило, рецессивные, фенотипический эффект которых вызывает гибель организма при определенных условиях, или на определенных этапах развития (чаще всего на эмбриональных стадиях развития, но существуют летали, вызывающие гибель например, при окукливании личинки дрозофилы). Летальные аллели возникают в результате т. н. Летальных — летальность таких мутаций говорит о том, что данный ген ответственен за какую-либо жизненно необходимую функцию.

Летальными называются аллели, носители которых погибают из-за нарушений развития или заболеваний, связанных с работой данного гена. Между летальными аллелями и аллелями, вызывающими наследственные болезни, есть все переходы. Например, больные хореей Хантингтона (аутосомно-доминантный признак) обычно умирают в течение 15-20 лет после начала заболевания от осложнений, и в некоторых источниках предлагается считать этот ген летальным.

Сублетальными, или полулетальными называются аллели, эффект гибельности которых част, но не обязателен (то есть переходные между летальными аллелями и аллелями, вызывающими наследственные болезни), условно летальными называют мутации, при которых организм несущий такие мутации может жить в предельно узком диапазоне условий, например мутации ауксотрофности у микроорганизмов (не способность расти на питательных средах без определённых жизненнонеобходимых веществ из-за утраты способности ихсинтезировать) субстратнозависимые мутации (неспособность использовать некоторые вещества в качестве источника углерода и энергии) и температурнозависимые мутации (способность жить только в узком диапазоне температур — например некоторые мутанты дрозофилы не способны жить при температуре выше 25 оС.

Сцепленное наследование признаков. Открытие явления сцепления генов (школа Т. Моргана). Группа сцепления. Сила сцепления. Гаметы кроссоверные и некроссоверные. Основные положения хромосомной теории наследственности.

В 1908 г Сеттен и Пикет обнаружили отклонения от свободного комбинирования признака по 3-ему закону Менделя. Морган и его сотрудники показали результаты анализирующего скрещивания гибридов Ф1, иногда отличающихся от ожидаемых. У потомков наблюдалась тенденция к наследованию родительских сочетаний признаков. В 1911-12 гг. Морган и его школа описали явление сцепления генов, т. е. совместную передачу группы генов из поколения в поколение или сцепленное наследование. Оно объясняется расположением соответствующих генов в одной и той же хромосоме. В поколениях они передаются, сохраняя сочетания аллелей родителей. Хромосомы рассматриваются как отдельные группы сцепления. Исло групп сцепления = гаплоидному набору хромосом.

Группа сцепления – совокупность генов, локализованных в одной хромосоме. Это объясняется кроссинговером. Образуется 4 типа гамет, но процентное соотношение не равное, т. к. кроссинговер происходит невсегда. Частота кроссинговера (сила сцепления генов) зависит о расстояния между генами. Чем больше расстояние, тем чаще происходит кроссинговер. Расстояние между генами определяется по % кроссинговера. За единицу расстояния принимается 1 морганида, равная 1% кроссинговера. Гаметы, несущие хроматиды не претерпевшие кроссинговера – некроссоверные. Их больше. Гаметы, в которые попали хроматиды, претерпевшие кроссинговер – кроссоверные, их меньше.

Термин «хромосома» был предложен в 1888г. В. Вальдейером. Детальная разработка хром. теории была осуществлена Морганом и его школой. Их работы подтвердили значение хромосом как основных носителей наслед. материала, представленного отдельными генами, их линейное расположение по длине хромосомы. Соответствующие гены размещаются в хромосоме, которая представляет собой устойчивую структуру, сохраняющую состав генов в ряду поколений клеток и организмов. Следовательно, родительские признаки в ряду поколений наследуются сцепления. Каждая хромосома уникальна по набору заключенных в ней генов.

Представление о линейности расположения генов в каждой хромосоме возникло на основе наблюдения возникающей рекомбинации между материнским и отцовским комплексами генов в гомологичных хромосомах. Частота рекомбинации характеризуется определенным постоянством для каждой пары генов в данной группе сцепления и различно для разных пар.

Частота рекомбинации связана с наследовательностью расположения генов в хромосоме и процессом кроссинговера в профазе 1 мейоза. Доказательством связи материального субстрата наследственности и изменчивости с хромосомами было строгое соответствие закономерностей наследования признаков поведению хромосом в ходе митоза, при мейозе и оплодотворении. В лаборатории Моргана был обнаружен особый тип наследования признаков, который хорошо объяснялся связью соответствующих генов с Х-хромосомой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: