Смешанного умножения векторов

А10. Циклическая перестановка сомножителей не меняет смешанного произведения, т.е. V.

Перестановка двух соседних сомножителей меняет знак смешанного произведения на противоположный, т.е.

, V.

Для доказательства достаточно применить доказательство свойства Г20 к и к . Параллелепипед будет тот же, только за основание будет принята другая грань (в первом случае – построенная на векторах и , во втором – на векторах и ).

Чтобы доказать вторую часть свойства, надо воспользоваться определением смешанного произведения и свойством А10 векторного умножения, а затем совершить циклическую перестановку:

.

А20. V .

Для доказательства этого свойства нужно доказать три равенства:

; ; .

Докажите их самостоятельно, пользуясь определением смешанного произведения и алгебраическими свойствами скалярного и векторного умножения векторов.

А30. ;

;

.

Докажите эти равенства самостоятельно, пользуясь определением смешанного произведения и алгебраическими свойствами скалярного и векторного умножения векторов.

Замечание. Смешанное произведение .

, т.к. .

Теорема 1(смешанное произведение в координатах). Если , , в базисе , , , то .

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: