double arrow
Б) Классификация ошибок измерений

Элементы теории ошибок измерений

Классификация измерений и ошибок измерений

А) Понятие измерений. Виды измерений

При геодезическом обеспечении строительства выполняется большой объём геодезических измерений.

Под измерениями понимают процесс сравнения некоторой физической величины с величиной того же рода, принятой за единицу измерения ( например, длина линии на местности, закреплённая колышками, сравнивается с мерным прибором - землемерной лентой, рулеткой и т.д. ).

Измерения подразделяются на прямые и косвенные.

Прямыми измерениями называют непосредственное сравнение единицы меры ( например, рулетки, землемерной ленты ) с объектом.

Случаи, когда измеряют одни величины, а определяемое значение вычисляют как функцию результатов измерений называют косвенными измерениями. Например, при определении площади какого-либо объекта прямоугольной формы нецелесообразно выполнять прямые измерения, взяв за единицу меры квадрат со стороной 1 м и укладывая его на определяемой площади. Целесообразно измерить длину и ширину объекта и вычислить площадь как произведение этих величин.

б) Классификация ошибок измерений

Известно, что всякие измерения сопровождаются ошибками, обусловленными рядом факторов (условиями измерений, опытом наблюдателя, точностью прибора и т.д. ).

Под ошибкой измерения понимают разность между результатом измерений lи истинным значением измеряемой величины Х




= l - X.( 1 )

По характеру влияния на результаты измерений различают следующие виды ошибок:

- грубые ошибки - это, как правило, просчёты. Например, при измерении линии длиной 15 м 50 см взяли отсчёт 16 м 50 см, т.е. грубо ошиблись на 1 м. Чтобы обнаружить грубую ошибку ( промах ), необходимо измерения повторить, по возможности другими методами;

- систематические ошибки - это, как правило, ошибки, входящие в результаты измерений по определённой математической зависимости. Это постоянная составляющая общей ошибки измерений или закономерно изменяющаяся ошибка при повторных измерениях одной и той же величины.

Например, длину линии измеряют рулеткой, номинальная длина которой 10 м ( l н = 10 м). Рулетка уложилась в измеряемой линии 5 раз( n = 5 ). Результат измерения линии равен D н = l н х n = 10 х 5 = 50 м.

Допустим, что в момент измерений длина рулетки была не 10 м, а 9.90 м, т.е. фактическая длина рулетки lф = 9.90 м. Тогда длина линии Д ф = l ф* 5 = 9.90 * 5 = 49. 50 м, а систематическая ошибка = Д н - Д ф = = 50.00 - 49.50 = + 0.50 м.



Если разность длин мерного прибора обозначить через l = l н - l ф, то систематическую ошибку можно вычислить по формуле

= n* l .( 2 )

Для ослабления систематических ошибок применяют следующие способы:

- в результаты измерений вводят поправки, равные по величине, но с противоположным знаком ;

- выбирают методику измерений, при которой ошибки входят в результаты измерений с противоположными знаками;

-выполняют измерения в условиях, при которых систематическая ошибка по абсолютной величине не превысит определённого малого значения.

- случайные ошибки -ошибки величину и знак которых точно предсказать невозможно. Случайная ошибка неизбежна и порождается условиями измерений.






Сейчас читают про: