Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Б) Понятие средней квадратической ошибки. Оценка точности измерений по формуле К. Гаусса




Чтобы выполнить оценку точности измерений, необходимо оценить прежде всего точность отдельного измерения. Казалось бы естественным взять для этого среднее арифметическое из всех случайных ошибок. Однако при этом на величину средней ошибки влияли бы разные знаки отдельных ошибок и может случиться так, что ряд с крупными отдельными ошибками получил бы меньшую среднюю ошибку, чем ряд с меньшими ошибками.

Если взять среднее арифметическое из абсолютных значений случайных ошибок, то при этом не будет достаточно отражено наличие в данном ряде отдельных сравнительно крупных ошибок.

При выборе критерия для оценки точности ряда измерений необходимо иметь в виду, что результат должен быть одинаково ошибочным, будет ли он больше или меньше истинного значения измеряемой величины. Кроме того, чем крупнее в данном ряде отдельные ошибки, тем меньше должна быть его точность.

Этим условиям лучше всего удовлетворяет средняя квадратическая ошибка результата измерения, выражаемая соотношением

m = , ( 8 )

где i - разности измеренных величин li и истинных значений X

i = l i - X, ( 9 )

известнымкакформула К . Гаусса

Пример обработки результатов измерения длины линии представлен в таблице 1.

Таблица 1 Обработка результатов измерения длины линии по формуле К. Гаусса

 
 


№№ Измеренная Истинная Ошибки

измере- длинадлина i,см i2,см

ний l i ,м X, м

1 110.01 110.01 0 0

2 03 + 2 4

3 02 +1 1

4 05 +4 16

5 04 +3 9

= 30

m = = 2.45 см.

Утроенное значение ср.кв.ош. принимается в качестве предельной ошибки D пр = 3m при вероятности р = 0.997. При вероятности р = 0.99 предельная ошибка D пр = 2.5 m, а при вероятности р = 0.95 D пр. = 2 m





Дата добавления: 2015-04-17; просмотров: 946; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9791 - | 7397 - или читать все...

Читайте также:

 

35.173.234.237 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.