Выбор значимых воздействий

Задача сокращения первоначального списка воздействий должна решаться до подготовки ЗВОС и предполагает тесное сотрудничество разработчика и инициатора деятельности, который может принимать решение о возможной ликвидации проекта и условиях его реализации. Первая редакция списка всех воздействий обычно осуществляется путем выбора только тех, которые характеризуются наибольшей интенсивностью и продолжительностью или тех, которые действуют на область слабой чувствительности.

Существует несколько критериев значимости воздействия, которые обязательно необходимо учитывать при подготовке ЗВОС вне зависимости от результатов общественного мнения по поводу проектных предложений. Этими критериями являются:

а) значительная по площади зона воздействия;

б) влияние на особо охраняемые территории;

в) особо опасное производство.

На этапе подготовки ЗВОС необходимо рассмотреть законодательные и нормативно-правовые документы в области охраны ОС и рационального использования природных ресурсов, содержащие требования по регламентации проектирования объектов. Цель такого рассмотрения заключается в том, чтобы установить области вероятных конфликтов и там, где возможно, избежать их. Например:

а) требования в области охраны ОС при осуществлении хозяйственной и иной деятельности, содержащиеся в законах РФ и других законодательных актах федерального уровня;

б) требования к проектированию и строительству, содержащиеся в СНиПах, ГОСТах;

в) требования к проектированию и строительству, содержащиеся в нормативно-правовых документах местных органов власти и управления;

г) требования к организации проектирования и строительства объектов общественного пользования, например парков, зоопарков, памятников истории и культуры, культовых сооружений и т.д.

В дальнейшем анализ воздействий на ОС и выбор наиболее значимых из них осуществляется в процессе обсуждения ЗВОС всеми заинтересованными сторонами.

5.2. Общие методы при ОВОС

Процедура подготовки ОВОС и сам итоговый документ представляют собой многогранный междисциплинарный труд, суть которого составляют знания из многих отраслей науки. В его основе лежат сбор и обобщение данных о состоянии окружающей среды и влиянии на нее проектируемого технического сооружения. При подготовке ОВОС и его разделов по оценке состояния окружающей среды и возможных воздействий на нее в качестве исполнителей приглашаются наиболее опытные специалисты, в совершенстве владеющие полевыми и камеральными методиками в своей области знаний, имеющие значительные наработки и фондовые материалы по региону строительства предполагаемого объекта.

На этапе создания ОВОС проектируемых объектов на первый план выступает прогнозирование как метод получения данных о возможном состоянии исследуемого объекта и природно-антропогенных ландшафтов в зоне его влияния на заданный период времени на основе предыдущего опыта эксперта. При подготовке ОВОС проводятся физико-географический, инженерно-геологический, экономический и социальный прогнозы.

Методы прогнозирования в свою очередь подразделяются на экспертные и фактографические.

Экспертное прогнозирование. Применяется в случае, если об объекте оценивания нет достоверных сведений и неизвестны количественные зависимости междупрогнозируемыми процессами и явлениями. Экспертные оценкимогут быть качественными или количественными, либо воздействие выстраивается по мере убывания или возрастания и выявляются сопутствующие ему состояния компонентов, ландшафтов,социума и других видов деятельности. Экспертные оценки широко применяют при анализе альтернативных решений, определениинеопределенности экологического риска и отдаленных последствий воздействия. При этом выделяюттакие виды экспертных оценок, как экстраполяция и метод прогнозирования по аналогии. Экстраполяция применяется при наличии пространственно-временных рядов статистических данныхоб объекте исследования, которые с определенной долей вероятности могут быть перенесены (экстраполированы) исследователемна ход процессов в будущем. Метод прогнозирования по аналогии предусматривает экстраполяцию закономерностей, отмеченных в результате мониторинга на существующих объектах, на проектируемые при условии сходства природных условий двух районов и технологии производства. Этот метод позволяет:

1) определить размеры зон влияния технического сооружения на природные комплексы в целом и их отдельные компоненты;

2) выявить пространственно-временную динамику в изменении отдельных компонентов природы в зависимости от специфики функционирования предприятия. Это в свою очередь создает основу для проведения комплексной оценки последствий.

Авторы учебника «Экологическое прогнозирование и экспертиза» К.Н. Дьяконов и А.В. Дончева приводят пять основных взаимодополняющих методов проведения ОВОС:

1) матричный метод;

2) метод сопряженного анализа карт;

3) метод системы потоковых диаграмм;

4) метод имитационного моделирования;

5) метод экспертных групп.

Матричный метод оценок воздействия. При оценке воздействия объектов на ОС используют различные типы матриц:

– перечни типов воздействий, простые контрольные списки;

– списки объектов, испытывающих влияние и изменяющихся под воздействием, простые контрольные списки;

– простейшие причинно-следственные матрицы, устанавливающие взаимодействие типов воздействия и объектов, испытывающих их;

– сложные матрицы экологических последствий хозяйственной деятельности и обратных реакций.

Перечни типов воздействия, либо списки компонентов природной среды, изменяющихся под воздействием, служат основой простых и сложных контрольных листов.

Совместный анализ карт. Суть метода заключается в том, что исследуемая территория делится на участки (исходя из топографических характеристик, типов землепользования и т. п.) и по каждому участку собирается информация о компонентах окружающей среды и потенциальных воздействиях на них. Для каждого из показателей и для каждого варианта проекта вычерчиваются схемы на кальке, совмещением которых выявляется как интенсивность нарушений среды, так и факторы природного и социально-экономического характера, затрудняющие осуществление проекта. С помощью метода совмещения можно оценивать воздействия линейных сооружений (автодорог, линий ЛЭП и т. п.), определять свободное пространство для застройки, обосновывать границы охраняемых территорий, регионов со сложной экологической ситуацией.

Метод потоковых диаграмм и сетевых графиков. Для определения первичных изменений и цепи их следствий применяется также метод сетей, или ступенчатая матрица, разработанная Дж. Соренсеном. Метод предполагает составление перечня разных вариантов землепользования и характерных для них типов воздействий. Далее определяются связанные с этими воздействиями первоначальные изменения состояния отдельных компонентов природной среды и последующие, вызванные уже нарушениями в природной среде. В отличие от матрицы взаимодействия компонентов этот метод наглядно показывает не только направление, но и сущность связей разного порядка между компонентами природной среды. Он дает возможность проследить за динамикой воздействий, т. е. показать возможные изменения как во время сооружения, так и после завершения строительства объекта. Но при увеличении числа анализируемых показателей метод становится громоздким и сложным для анализа. Поэтому его применение возможно для проектов с ограниченным числом воздействий. Недостаток метода заключается также в учете изменений лишь элементов природной среды.

Метод имитационных математических моделей. Этот метод отражает количественные зависимости между воздействиями и позволяет рассматривать социальные и природные системы как непрерывно развивающиеся и изменяющиеся.

Выделяют пять этапов оценки экологических последствий от планируемой хозяйственной деятельности:

– природную оценку;

– специальную природную;

– технологическую;

– экономическую;

– социальную.

1. Природная оценка. Сущность оценки заключается в соотнесении прогнозируемых изменений в свойствах ландшафтов и процессов, протекающих в них, с теми же процессами и свойствами зональных аналогов вне сферы антропогенного воздействия. Природная оценка заключается в сравнении прогнозируемых изменений конкретных параметров ландшафта с пространственной или временной изменчивостью тех же показателей – климатических, гидрологических, ботанических, почвенных, геохимических.

2. Специальная природная оценка. Для природных процессов, которые не жестко формализованы, в ряде случаев проведение природной оценки первого вида затруднительно. В таком случае целесообразно оценивать изменение одних показателей состояния ландшафтов (скорости ветра, глубины залегания фунтовых вод, влажности почв, атмосферных осадков и т. д.) в сравнении с изменением других, тоже природных показателей (изменением биологической и сельскохозяйственной продуктивности лесов, лугов, пашни, прохождением растениями фенологических фаз и т. д.).

3. Технологическая оценка. Существует многообразие технологических оценок вне и в сфере техногенного воздействия. Это специальные виды оценивания, для некоторых из них разработаны нормативы, по отношению к которым и производится оценка. Она может быть качественной по принципу «хорошо–нейтрально–плохо», но чаще всего определяется превышением над нормативом. Например, экологическая оценка технологий, которая является разновидностью технологической оценки, осуществляется по отношению к нормативам сырья и материалов, нормативам землеемкости, отходности, ресурсоемкости, санитарно-гигиеническим и т. д. Технологическая оценка предусматривает рассмотрение прогнозируемых изменений свойств и процессов в ландшафтах окружающей территории с позиций требований различных отраслей хозяйства, производственных технологий и видов деятельности человека (сельскохозяйственной, рекреационной, промышленного, гражданского и военного строительства и т. д.).

4. Экономическая оценка изменения природных условий и компенсационных мероприятий по снижению или предотвращению негативного эффекта от создания хозяйственных объектов. Экономическая оценка включает в себя расчет прямого ущерба (или эффекта от улучшения) функционированию отраслей хозяйств, состоянию производственных фондов, трудовых ресурсов, затрат на компенсацию негативных последствий и т. д. Собственно экономическая оценка – это соотнесение экономических обобщающих показателей проекта с аналогичными характеристиками для отрасли в целом с оценкой способа достижения данного результата другим путем.

5. При социальной оценке возможных последствий производств возникает потребность конструирования «оптимальной» природной среды или «желаемого» ее состояния. В характеристику социальных условий и их оценку входят санитарно-гигиенические, эстетические, психологические условия. Для ландшафта как среды обитания человека показателями социальных условий выступают: норма химического, шумового, радиационного загрязнения, санитарно-гигиенические нормативы, обеспечение бытового водопотребления, состояние зеленых насаждений и их площадь на одного жителя, живописность, разнообразие ландшафта, благоустройство (наличие дорог с твердым покрытием, социальная инфраструктура). По большинству из указанных показателей разработаны общие и региональные нормативы и критерии. Отражением степени соответствия реальных условий оптимально-нормативным выступают такие интегральные показатели, как средняя продолжительность жизни в регионе, число болезней, общая и детская смертность. Часто бывает сложно методически вычленить роль экологического фактора в состоянии здоровья населения.

Социальная совместимость проектов (эстетическая, культурная, религиозная) оценивается воздействием на социально-психологические механизмы, при этом определяется соответствие цели реализации проекта этническому стереотипу, национальным ценностям, установкам. Оценка социальной совместимости проекта особенно актуальна для регионов пионерного освоения, населенных коренными малыми народами. Например, нефтегазовый комплекс в Западной Сибири чужд коренному населению, занимающемуся оленеводством, охотой и рыболовством. Свиноводческий комплекс был бы абсолютно неприемлем в исламской Чечне и т. д. Социальная несовместимость требует материальных компенсаций, которые в некоторых случаях превышают выгоду от проекта и делают проект экономически нерентабельным.

5.3. Оценка воздействия на атмосферу

Атмосфера ‑ один из элементов окружающей среды, который повсеместно подвержен воздействию человеческой деятельности. Последствия такого воздействия зависят от многих факторов и проявляются в изменении климата и химического состава атмосферы. Эти изменения, безразличные для самой атмосферы, являются существенным фактором влияния на биотическую составляющую среды, в том числе на человека.

Атмосфера, или воздушная среда, оценивается в двух аспектах.

1. Климат и его возможные изменения, как под влиянием естественных причин, так и под влиянием антропогенных воздействий вообще (макроклимат) и данного проекта в частности (микроклимат). Эти оценки предполагают также прогноз возможного воздействия климатических изменений на осуществление проектируемого вида антропогенной деятельности.

2. Загрязнение атмосферы. Сначала оценивается возможность загрязнения атмосферы с помощью одного из комплексных показателей: потенциал загрязнения атмосферы (ПЗА), рассеивающая способность атмосферы (РСА) и др. Затем проводятся оценки существующего уровня загрязнения атмосферы в данном регионе. Выводы и о климато-метеорологических особенностях, и об исходном загрязнении атмосферы опираются на, прежде всего, данные регионального Росгидромета, в меньшей степени ‑ на данные санитарно-эпидемиологической службы и специальных аналитических инспекций Госкомэкологии, а также на другие литературные источники. И, наконец, на основании полученных оценок и данных о конкретных выбросах в атмосферу проектируемого объекта рассчитываются прогнозные оценки загрязнения атмосферы с использованием специальных компьютерных программ («Эколог», «Гарант», «Эфир» и др.), которые позволяют не только рассчитать уровни потенциального загрязнения атмосферы, но и получить картосхемы полей концентраций и данные о выпадении загрязняющих веществ (ЗВ) на подстилающую поверхность.

Критерием оценки степени загрязнения атмосферы предельно-допустимые концентрации (ПДК) загрязняющих веществ. Измеренные или рассчитанные концентрации ЗВ в воздухе сравниваются с ПДК, и, таким образом, загрязнение атмосферы измеряется в величинах (долях) ПДК.

Не следует путать концентрации ЗВ в атмосфере с их выбросами в атмосферу. Концентрация ‑ это масса вещества в единице объема (или даже массы), а выброс ‑ масса вещества, поступившая в единицу времени (т.е. «доза»). Выброс не может быть критерием загрязнения атмосферы, так как загрязнение воздуха зависит не только от величины (массы) выброса, но и от ряда других факторов (метеопараметры, высота источника выброса и др.).

Прогнозные оценки загрязнения атмосферы используются в других разделах ОВОС для прогноза последствий состояния других факторов от воздействия загрязненной атмосферы (загрязнение подстилающей поверхности, вегетация растительности, заболеваемость населения и др.).

Оценка состояния атмосферы при проведении экологической экспертизы основана на интегральной оценке загрязнения воздушного бассейна исследуемой территории, для определения которой используется система прямых, косвенных и индикаторных критериев. Оценка качества атмосферы (прежде всего степени её загрязненности) довольно хорошо разработана и базируется весьма большом пакете нормативных и директивных документов, использующих прямые мониторинговые методы измерения параметров среды, а также косвенные ‑ расчетные методы и критерии оценки.

Прямые критерии оценки. Основными критериями состояния загрязнения воздушного бассейна являются величины предельно допустимых концентраций (ПДК). При этом следует учитывать, что атмосфера занимает особое положение в экосистеме, являясь средой переноса техногенных веществ-загрязнителей и наиболее изменяемой и динамичной из всех составляющих абиотических её компонентов. Поэтому для оценки степени загрязнения атмосферы применяются дифференцированные по времени оценки показатели: максимально разовые ПДКмр (для краткосрочных эффектов) и среднесуточные ПДКсс, а также среднегодовые ПДКг (для длительного воздействия).

Степень загрязнения атмосферы оценивается по кратности и частоте превышения ПДК с учетом класса опасности, а также суммации биологического действия загрязняющих веществ (ЗВ). Уровень загрязнения воздуха веществами разных классов опасности определяется «приведением» их концентраций, нормированных по ПДК, к концентрациям веществ 3-го класса опасности.

Загрязняющие вещества в воздушном бассейне по вероятности их неблагоприятного влияния на здоровье населения делят на 4 класса: 1-й ‑ чрезвычайно опасные, 2-й ‑ высоко опасные, 3-й ‑ умерено опасные и 4-й ‑ малоопасные. Обычно используются фактические максимально разовые, среднесуточные и среднегодовые ПДК, сравнивая их с фактическими концентрациями ЗВ в атмосфере за последние несколько лет, но не менее, чем за 2 года.

Другим важным критерием оценки суммарного загрязнения атмосферного воздуха (различными веществами по среднегодовым концентрациям) является величина комплексного показателя (Р), равная корню квадратному из суммы квадратов концентраций веществ различных классов опасности, нормированных по ПДК и приведенных к концентрациям веществ 3-го класса опасности.

Наиболее общим и информативным показателем загрязнения воздуха является КИЗА ‑ комплексный индекс среднегодового загрязнения атмосферы. Его количественное ранжирование по классу состояния атмосферы приведено в табл. 4. Приведенное ранжирование по классам состояния атмосферы выполнено в соответствии с классификацией уровней загрязнения по четырехбалльной шкале.

КИЗА обычно применяется для сравнения загрязнения атмосферы различных участков исследуемой территории (городов, районов и т.д.) и для оценки временной (многолетней) тенденции изменения состояния загрязнения атмосферы.

Таблица 4

Критерии оценки состояния загрязнения атмосферы по комплексному индексу (КИЗА)

Показатель состояния Классы экологического состояния атмосферы
норма (Н) риск (Р) кризис (К) бедствие (Б)
Уровень загрязнения воздуха (Jm) менее 5 5 ‑ 8 8 ‑ 15 более 15

Ресурсный потенциал атмосферы территории определяется её способностью к рассеиванию и выведению примесей, соотношением фактического уровня загрязнения и величиной ПДК. Оценка рассеивающей способности атмосферы основана на величине таких комплексных климатических и метеорологических показателей, как потенциал загрязнения атмосферы (ПЗА) и параметр потребления воздуха (ПВ). Эти характеристики определяют особенности формирования уровней загрязнения в зависимости от метеоусловий, способствующих накоплению и выведению примеси из атмосферы.

ПЗА ‑ комплексная характеристика повторяемости метеорологических условий, неблагоприятных для рассеивания примеси в воздушном бассейне. В России выделены 5 классов ПЗА, характерных для городских условий, в зависимости от повторяемости приземных инверсий и застоев слабых ветров и продолжительности туманов.

Параметр потребления воздуха (ПВ) представляет собой объем чистого воздуха, необходимый для разбавления выбросов ЗВ до уровня средней допустимой концентрации. Этот параметр особенно важен при управлении качеством воздушной среды в случае установления природопользователям режима коллективной ответственности (принцип «пузыря») при рыночных отношениях. На основе данного параметра объем выбросов устанавливается для целого региона, а уже затем находящиеся на его территории предприятия совместно находят наиболее выгодный для них способ обеспечить этот объем, в т.ч. через торговлю правами на загрязнение.

Оценка ресурсного потенциала атмосферы проводится с учетом гигиенического обоснования комфортности климата территории, возможности использования территории в рекреационных и селитебных целях. Важной исходной составляющей при этой оценке является физиолого-гигиеническая классификация погод (т.е. сочетания таких метеофакторов, как температура и влажность воздуха, солнечная радиация и др.) холодного и теплого периодов года.

В качестве критерия для оценки оптимального размещения источников загрязнения атмосферы и селитебных территорий используется величина резерва (дефицита) рассеивающих свойств атмосферного воздуха (ВР).

Атмосферный воздух принято рассматривать в качестве начального звена в цепочке загрязнений природных сред и объектов. Почвы и поверхностные воды могут являться косвенным показателем её загрязнения, а в отдельных случаях, наоборот ‑ быть источниками вторичного загрязнения атмосферы. Это определяет необходимость помимо оценки загрязнения непосредственно воздушного бассейна учитывать возможные последствия взаимовлияния атмосферы и сопредельных сред и получения интегральной («смешанной» ‑ косвенно-прямой) оценки состояния атмосферы.

Косвенными показателями оценки загрязненности атмосферы является интенсивность поступления атмосферной примеси в результате сухого осаждения на почвенный покров и водные объекты, а также в результате вымывания её атмосферными осадками. Критерием этой оценки служит величина допустимых и критических нагрузок, выраженных в единицах плотности выпадений с учетом временного интервала (длительности) их поступления.

Группой экспертов североевропейских стран рекомендованы следующие критические нагрузки для кислых лесных почв, поверхностных и грунтовых вод (с учетом совокупности химических изменений и биологических эффектов для этих сред):

– для соединений серы 0,2-0,4 гS/м2·год;

– для соединений азота 1-2 гN/м2·год.

Завершающим этапом комплексной оценки состояния загрязнения атмосферного воздуха является анализ тенденций динамики техногенных процессов и оценка возможных негативных их последствий в краткосрочном и долгосрочном аспекте (перспективе) на локальном и региональном уровнях. При анализе пространственных особенностей и временной динамики последствий воздействия загрязнения атмосферы на здоровье населения и состояние экосистем применяется метод картографирования (в последнее время ‑ построения ГИС) с использованием набора картографических материалов, характеризующих природные условия региона, включая наличие ООПТ.

Оптимальная система компонентов (элементов) интегральной (комплексной) оценки состояния атмосферы должны включать:

– оценки уровня загрязнения с санитарно-гигиенических позиций (ПДК);

– оценки ресурсного потенциала атмосферы (ПЗА и ПВ);

– оценки степени влияния на определенные среды (почвенно-растительный и снеговой покров, воды);

– тенденции и интенсивности (скорости) процессов антропогенного развития экспортируемой природно-технической системы для выявления краткосрочных и долгосрочных эффектов воздействия;

– определения пространственного и временного масштабов возможных негативных последствий антропогенного воздействия.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на атмосферу Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Характеристика существующего и прогнозируемого загрязнения атмосферного воздуха. Должен проводиться расчет и анализ ожидаемого загрязнения атмосферного воздуха после ввода проектируемого объекта в эксплуатацию на границе СЗЗ, в жилой зоне, на особо охраняемых и др. природных территориях и объектах, находящихся в зоне влияния данного объекта.

2. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания вредных веществ в атмосферном воздухе.

3. Параметры источников выбросов загрязняющих веществ, количественные и качественные показатели выбросов вредных веществ в атмосферный воздух при установленных (нормальных) условиях эксплуатации предприятия и максимальной загрузке оборудования.

4. Обоснование данных о выбросах ЗВ должно в т.ч. содержать перечень мероприятий по предотвращению и снижению выбросов вредных веществ в атмосферу и оценку степени соответствия применяемых процессов, технологического и пылегазоочистного оборудования передовому уровню.

5. Характеристика возможных залповых выбросов.

6. Перечень загрязняющих веществ и групп веществ, обладающих суммирующим вредным действием.

7. Предложения по установлению нормативов предельно допустимых выбросов.

8. Дополнительные мероприятия по снижению выбросов загрязняющих веществ в атмосферу с целью достижения нормативов ПДВ и оценка степени их соответствия передовому научно-техническому уровню.

9. Обоснование принятых размеров СЗЗ (с учетом розы ветров).

10. Перечень возможных аварий: при нарушении технологического режима; при стихийных бедствиях.

11. Анализ масштабов возможных аварий, мероприятия по предотвращению аварийных ситуаций и ликвидации их последствий.

12. Оценка последствий аварийного загрязнения атмосферного воздуха для человека и ОС.

13. Мероприятия по регулированию выбросов вредных веществ в атмосферный воздух в периоды аномально неблагоприятных метеорологических условий.

14. Организация контроля за загрязнением атмосферного воздуха.

15. Объем природоохранных мероприятий и оценка стоимости капитальных вложений на компенсационные мероприятия и меры по защите атмосферного воздуха от загрязнений, в том числе при авариях и неблагоприятных метеоусловиях.

5.4. Оценка воздействия на поверхностные воды

Одна из наиболее острых экологических проблем – состояние поверхностных вод, т.е. рек и озер. Проблема состояния поверхностных вод имеет два аспекта: количественный и качественный. И тот, и другой аспект составляют одно из важнейших условий существования живых существ, в том числе и особенно – человека. Хотя морские воды представляют собой объект, отличающийся от поверхностных вод, проблемы воздействия антропогенной деятельности на моря и последствия их во многом схожи с проблемами поверхностных вод.

Оценка качества поверхностных вод (прежде всего степени их загрязненности) относительно хорошо разработана и базируется весьма представительном пакете нормативных и директивных документов, использующих прямые гидрохимические и гидрологические методы и критерии оценки.

Оценка количественных аспектов водных ресурсов (в т.ч. их загрязнения) преследует двоякую цель. Во-первых, необходимо оценить возможности удовлетворения потребностей планируемой деятельности в водных ресурсах, а во-вторых, последствия возможного изъятия и части этих и загрязнения оставшихся ресурсов для других предприятий и жизнедеятельности населения.

Для таких оценок необходимо исходить из знания гидрологических особенностей и закономерностей режима водных объектов, являющихся источниками водоснабжения, а также существующие уровни водопотребления и объемов водных ресурсов, требуемых для реализации проекта. Последнее включает в себя также технологическую схему водопотребления (безвозвратное, оборотное, сезонное и т.д.) и является оценкой прямого воздействия планируемой деятельности на количество водных ресурсов.

Однако большое значение имеет также косвенное воздействие, сказывающееся, в конечном счете, на гидрологических характеристиках водных объектов. К косвенным воздействиям относятся нарушения русла рек (драгами, земснарядами и др.), изменение поверхности водосбора (распашка земель, вырубка лесов), подпруживание (подтопление) при строительстве или понижение уровня грунтовых вод и многое другое. Необходимо выявить и проанализировать все возможные виды воздействий и вызываемых ими последствий.

Наиболее распространенным и существенным фактором, обуславливающим дефицит водных ресурсов во многих регионах, является загрязнение водных источников, о котором обычно судят по данным режимных и других наблюдений службами мониторинга Росгидромета и других ведомств, контролирующих состояние водной среды.

Каждый водный объект обладает присущим ему природным гидрохимическим качеством, являющимся его исходным свойством, которое формируется под влиянием гидрологических и гидрохимических процессов, протекающих в каждом водоеме, а также интенсивности его внешнего загрязнения. Совокупное воздействие этих процессов способно как нейтрализовать вредные последствия попадания в водоемы антропогенных загрязнителей (самоочищение водоемов), так и привести к их стойкому ухудшению качества водных ресурсов (загрязнение, засорение, истощение).

Способность самоочищения каждого водного объекта, т.е. количество загрязняющих веществ, которое может быть «переработано» и нейтрализовано водоемом, зависит от разных факторов и подчиняется определенным закономерностям (поступающее количество воды, разбавляющей загрязненные стоки, её температура, изменение этих показателей по сезонам, качественный состав загрязняющих ингредиентов и др.).

Пожалуй, одним из главных факторов, определяющих возможные уровни загрязнения водоемов, помимо их природных свойств, является исходное гидрохимическое состояние, возникающее под влиянием антропогенной деятельности. Прогнозные оценки состояния загрязнения водоемов могут быть получены путем суммирования существующих уровней загрязнения и дополнительных количеств ЗВ, планируемых к поступлению от проектируемого объекта. При этом необходимо учитывать как прямые (непосредственный сброс в водоемы), так и косвенные (поверхностный сток, внутрипочвенный сток, аэрогенное загрязнение и т.д.) источники.

Основным критерием загрязнения воды также являются ПДК, среди которых различают санитарно-гигиенические (нормируют по влиянию на здоровье человека), и рыбохозяйственные, разработанные для защиты гидробионтов (живых существ водных объектов). Последние, как правило, строже, т.к. обитатели водоемов обычно более чувствительны к загрязнению, нежели человек.

Основным источником информации о гидрологических и гидрохимических свойствах водоемов являются материалы наблюдений, осуществлявшихся в сети ОГСНК (Общегосударственная сеть наблюдения и контроля Роскомгидромета СССР) и ныне проводимые в рамках формирующейся ЕГСЭМ (Единой государственной системы экологического мониторинга) России.

Помимо вышеуказанных важное место среди критериев экологической оценки состояния водных объектов занимают индикационные критерии оценки. В последние годы биоиндикация (наряду с традиционными химическими и физико-химическими методами) получила достаточно широкое распространение при оценках качества поверхностных вод. Она по функциональному состоянию (поведению) тест-объектов (ракообразные ‑ дафнии, водоросли ‑ хлорелла, рыбы ‑ гуппи) позволяет ранжировать воды по классам состояний (норма. риск, кризис, бедствие) и по существу дает интегральную оценку их качества, а также определяет возможность использования воды для питьевых и других, связанных с биосферой, целей.

Лимитирующим фактором использования метода биотестирования является высокая продолжительность анализа (не менее 4 суток) и отсутствие информации о химическом составе воды. Пример использования биотестов для определения качества воды приводится в табл. 5 (по данным Ю.Я. Кислякова).

Таблица 5

Критерии оценки состояния поверхностных и сточных вод на основе биотестов

Оценочные показатели Классы состояния поверхностных вод
норма (Н) риск (Р) кризис (К) бедствие (Б)
Ракообразные (дафнии) (% гибели в течение 96 час. экспозиции в тестируемой воде) менее 10     более 60
Водоросли (хлорелла) (% уменьшения числа клеток в тестируемой воде по сравнению с контрольной) менее 10     более 60
Рыбы (гуппи) (% гибели в течение 96 час. экспозиции в тестируемой воде) менее 10     более 60

Не менее важными, чем показатели качества вод, являются ресурсные критерии оценки. Для поверхностных вод в качестве критериев оценки их ресурсов рекомендуются два наиболее емких показателя: величина поверхностного (речного) стока или изменение его режима применительно к определенному бассейну и величина объема единовременного отбора воды.

Эти критерии, с ранжирование по классам состояния, приведены в табл. 6. Сами критерии являются общепризнанными и используются в указанных нормативных документах, а их градация по классам состояния поверхностных вод условная, но опирается на данные из публикаций специалистов.

Таблица 6

Ресурсные критерии оценки состояния поверхностных вод

Оценочные показатели Классы состояния поверхностных вод
норма (Н) риск (Р) кризис (К) бедствие (Б)
Изменение речного стока (в % от первоначального) менее 15 15-20 50-70 более 75
Объем возможного едино­временного водоотбора (м3/с) более 5 1-5 менее 1 отсутствует

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на поверхностные воды Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Гидрографическая характеристика территории.

2. Характеристика источников водоснабжения, их хозяйственное использование.

3. Оценка возможности забора воды из поверхностного источника на производственные нужды в естественных условиях (без регулирования речного стока; с учетом существующей зарегулированности речного стока).

4. Местоположение водозабора, его характеристика.

5. Характеристика водного объекта в расчетном створе водозабора (гидрологический, гидрохимический, ледовый, термический, скоростной режимы водного стока, режим наносов, русловые процессы, опасные явления: заторы, наличие шуги).

6. Организация санитарно-защитной зоны водозабора.

7. Водопотребление в период строительства объекта. Водохозяйственный баланс предприятия. Оценка рациональности использования воды.

8. Характеристика сточных вод - расход, температура, состав и концентрации загрязняющих веществ.

9. Технические решения по очистке сточных вод в период строительства объекта и его эксплуатации - краткое описание очистных сооружений и установок (технологическая схема, тип, производительность, основные расчетные параметры), ожидаемая эффективность очистки.

10. Повторное использование вод, оборотное водоснабжение.

11. Способы утилизации осадков очистных сооружений.

12. Сброс сточных вод - место сброса, конструктивные особенности выпуска, режим отведения сточных вод (периодичность сбросов).

13. Расчет предельно-допустимого сброса (ПДС) очищенных сточных вод.

14. Характеристика остаточного загрязнения при реализации мероприятий по очистке сточных вод (в соответствии с предельно-допустимым сбросом).

15. Оценка изменений поверхностного стока (жидкого и твердого) в результате перепланировки территории и снятия растительного слоя, выявление негативных последствий этих изменений на водный режим территории.

16. Оценка воздействия объекта на поверхностные воды в процессе строительства и эксплуатации, включая последствия воздействия отбора воды на экосистему водоема; тепловое, химическое, биологическое загрязнение, в том числе при авариях.

17. Оценка изменений русловых процессов, связанных с прокладкой линейных сооружений, строительством мостов, водозаборов, и выявление негативных последствий этого воздействия, в том числе на гидробионты.

18. Прогноз воздействия намечаемого объекта (отбор воды, остаточное загрязнение при сбросе очищенных сточных вод, изменение температурного режима и др.) на водную флору и фауну, на хозяйственное и рекреационное использование водных объектов, условия жизни населения.

19. Организация контроля за состоянием водных объектов.

20. Объем и общая стоимость водоохранных мероприятий, их эффективность и очередность реализации, включая мероприятия по предупреждению и ликвидаций последствий аварий.

5.5. Оценка воздействия на литосферу

Основные признаки, характеризующие литосферу и влияющие на деятельность людей, а также, в свою очередь, испытывающие воздействие, включают в себя комплекс факторов, которые подлежат оценке и анализу в процессе разработки ОВОС, поскольку вносят существенный вклад в формирование экологических условий, как в естественной, так и в техногенной среде.

В первую очередь необходимо оценивать возможность и силу землетрясений, извержений вулканов и других природных катастрофических процессов, которые относятся к внезапным экстремальным явлениям, но тем разрушительнее их последствия. Разрушение же функционирующего объекта также может вызвать катастрофические последствия для окружающей среды, но уже антропогенного характера (например, разрушение АЭС, разрывы нефте- и газопроводов и др.). Необходимо предвидеть также возможные последствия, связанные с незаметным для человеческого глаза, но опознаваемые по косвенным признакам тектонические движения фундамента земной коры, которые могут проявиться в аварийных явлениях на реализованных проектах.

Важным фактором, подлежащим оценке, является литология пород, слагающих данный район, особенно поверхностных, со всеми их свойствами (реакция на физические воздействия, изменения свойств при контакте с водой, химический состав, наличие многолетнемерзлых пород и пр.). Исходные свойства пород предопределяют прогноз их состояния при различных видах воздействия.

Особое значение имеет оценка воздействия на подземные воды, которые очень часто служат основным источником водоснабжения, особенно бытового. Оценить степень защищенности подземных вод от поверхностного загрязнения поможет анализ геологического строения территории и возможные нарушения целостности перекрывающих пластов, ведущие к проникновению загрязнений вовнутрь.

Наконец, заключительным разделом оценки воздействия на литосферу, является геоморфологического строения местности с динамическими тенденциями современных процессов рельефообразования и прогноз возможного изменения этих тенденций (в сторону усиления или сокращения) под влиянием осуществления данного проекта. Оценке подлежат процессы водной и ветровой эрозии, карстообразования, многолетние мерзлотные явления, а также процессы, связанные с подтоплением территории, а также их прямые и косвенные последствия для других оцениваемых факторов. Литосфера тоже испытывает прямые и косвенные воздействия изменений других факторов, которые также необходимо выявить и оценить.

Отличительной чертой литосферы как геосферной оболочки является её многокомпонентность, включающая в себя рельеф, поверхностную часть литосферы (собственно геологическую среду) и развитые на территории природные и антропогенные геологические процессы. Соответственно, требуется большой набор критериев оценки и особые подходы к их интеграции. Многие вопросы в этой области регламентируются имеющимися нормативно-правовыми и нормативно-техническими документами.

Наиболее известны геохимические критерии. Их применение основано на сопоставлении существующего загрязнения литосферы с и её компонентов (вместе с подземными водами) с ПДК или фоном с учетом токсичности вещества-загрязнителя (ЗВ). По аналогии с атмосферой и водами, в общем виде такая оценка с ранжированием по классам, представлена в табл. 7. Предлагаемая таблица позволяет оценить состояние литосферы по любому ЗВ или их сумме.

Подземная гидросфера также довольно четко регламентирована и оценки её качества устанавливаются по отношению к соответствующим ПДК. Для оценки масштабов техногенного загрязнения подземных вод вводятся физические точки их отсчета. Такими точками отсчета могут быть качество подземных вод в естественном состоянии (Се) и предельно-допустимая концентрация ЗВ в подземных водах, используемых для питьевых целей.

Таблица 7

Геохимические критерии оценки состояния литосферы

Оценочные показатели Классы состояния литосферы
норма (Н) риск (Р) кризис (К) бедствие (Б)
Концентрации всех определяемых элементов и соединений (в ПДК) менее 1 1-5 (2-й, 3-й классы опасности); 1 (1-й класс опасности) 5-10 (2-й, 3-й классы опасности); 1-5 (1-й класс опасности) более 10 (2-й, 3-й классы опасности); более 5 (1-й класс опасности)

Кроме того, для характеристики масштабов загрязнения подземных вод важное значение имеет размер площади (F) области загрязнения. Таким образом, состояние загрязнения подземных вод дается по двум показателям: качеству подземных вод (С) и ранее указанный параметр F.

На этой основе выделяются 4 уровня состояния подземных вод или аналогичных классов их состояний (табл. 8).

Таблица 8

Критерии оценки состояния подземных вод

Оценочные показатели Классы состояния подземных вод
норма (Н) риск (Р) кризис (К) бедствие (Б)
Качество воды С (в ПДК) менее 1 1-5 5-10 более 10
Площадь области загрязнения F (км2) менее 0,5 0,5-5 5-10 более 10

В первом классе состояния не требуется никаких специальных природоохранных мер, кроме соблюдения требований законодательства и осуществления планового контроля за состоянием подземных вод. Во втором должны быть предусмотрены ограничительные природоохранные меры. В третьем и, в особенности, в четвертом классах состояния необходимо незамедлительное осуществление защитных мер.

Ресурсные критерии оценки подземных вод. Для подземных вод в качестве критерии оценки их ресурсов рекомендуются следующие основные показатели: модуль эксплуатационных запасов (л/с с кв. км территории), который при необходимости может быть дифференцирован по водоносным горизонтам, используемым для централизованного водоснабжения и величина сработки водоносных горизонтов. Эти показатели наиболее целесообразно использовать на предпроектной стадии работ. Геодинамическая группа критериев литосферы используется преимущественно для оценки состояния рельефа и развития природных и техногенно-активизированных геологических процессов. Для рельефа и подземного пространства можно предложить 2 показателя: площадь и глубину техногенной переработки (нарушенности, освоенности, застроенности), пример использования которых, приведен в табл. 9.

Таблица 9

Геодинамические критерии оценки состояния литосферы

Оценочные показатели измененности рельефа Классы экологического состояния территории
норма (Н) риск (Р) кризис (К) бедствие (Б)
Площадь техногенного рельефа к площади участка (%) менее 10 10-25 25-50 более 50
Техногенный размах рельефа (м) менее 10 10-20 20-50 более 50
Площади подработанных территорий (%) более 10 10-20 20-40 более 40

Рекомендованные градации геодинамических критериев оценок состояния литосферы довольно условны (научного обоснования для них пока не существует) и ориентировочны. Они годятся, главным образом, для предварительной оценки измененности рельефа на стадии предпроектных разработок. На более поздних стадиях проекта критерии оценки могут быть трансформированы по количественным значениям выделяемых градаций в соответствии с конкретными условиями территории и характером планируемого техногенного воздействия.

Оценка площадей и относительной пораженности территории опасными геологическими процессами (ОГП) изложена во множестве публикаций, однако узаконенных, нормированных количественных значений пока не имеет. Обобщение разработок позволяет предложить следующую шкалу оценок, представленных в табл. 10.

При практической реализации предлагаемых критериев оценки необходимо учитывать, что ключевым моментом является выделение для каждой территории ведущих, наиболее опасных геологических процессов или их парагенезов. Критерием такого выделения является оценка эколого-экономического ущерба для данной территории при определенных видах техногенного воздействия.

Таблица 10

Критерии оценки состояния литосферы (рельефа) по развитию геологических процессов

Оценочные показатели Классы геоэкологического состояния территории
норма (Н) риск (Р) кризис (К) бедствие (Б)
Площадная пораженность ОГП (в %) менее 5 5-25 25-50 более 50
Сложность инженерно-геологических условий (меры защиты) несложные (локальные меры) сложные (меры на огранич. террит.) весьма сложные (повсеместная защита) систематические катастрофы (меры не гарантируют безопасности)

Интегральная оценка измененности геологической среды. В настоящее время существует несколько методических подходов к суммарной (интегральной) оценке состояния геологической среды и степени её измененности.

Первый подход (градации по степеням покомпонентной измененности) базируется на использовании двурядной матрицы, на которой по вертикальной шкале располагаются анализируемые компоненты геологической среды с разбивкой по степени измененности, а по горизонтальной шкале ‑ группы оценочных критериев. Все они индексируются, что позволяет на пересечении вертикальных и горизонтальных граф получить искомую оценку состояния каждого компонента геосреды по степени измененности для всех оценочных критериев. На карту выносится индекс, а его расшифровка дается в экспликации. Суммарный учет частных оценок проводится путем отбора наиболее измененных компонентов геосреды с составлением карт «семафорного» типа, на которых указывается в каждом выделенном контуре через циклограммы степень и характер измененности.

При практическом использовании такого подхода рекомендуется отбраковка второстепенных критериев и выбор определяющих, в ходе чего учитываются только те компоненты геологической среды, на которые ожидается основное антропогенное воздействие. Вариантом этого метода показа суммарной оценки является отражение её не на одной карте, а на нескольких оценочных картах. Очевидно, что критерии оценки гидрохимической группы целесообразно объединить на одной карте, геологическую основу которой будет составлять либо оценка защищенности от загрязнения первого (поверхностного) водоносного горизонта, либо (в более широком плане) ‑ учет чувствительности территории к техногенному загрязнению. Критерии оценок остальных групп (инженерно-геологические, геодинамические, ландшафтные, ресурсные) следует показывать на другой карте, геологическую основу которой составляют таксоны типологического, инженерно-геологического районирования с выделением типов строения геологической среды (ГС) на глубину техногенного воздействия. Общей рекомендацией является выбор и отражение на карте не более 4-5 критериев оценки по единой шкале градаций измененности ГС.

Второй способ (градации относительной пораженности и измененности) получения суммарных оценок степени геоэкологической измененности территории реализуется через учет коэффициента площадной пораженности и относительной измененности, путем их суммирования по всем рассматриваемым критериям и компонентам среды.

Для каждого вида воздействия определяется площадь пораженности Si по градациям степени измененности. Далее определяется отношение площади пораженности к оцениваемой площади участка (Kpi), определяется для каждого вида воздействия с учетом степени измененности (интенсивности пораженности) по формуле

, (2)

где ni ‑ интенсивность пораженности (градации). Затем все Gi суммируются, и в итоге полученная величина отражает искомую суммарную (интегральную) измененность территории таксона районирования. Такая оценка является относительной, хотя и характеризует вполне определенные (в физическом выражении) участки территории, пораженные тем или иным антропогенным воздействием.

Данные общие методические подходы и правила рекомендуются к использованию при проведении экологических экспертиз, что в равной степени относится как к составителям и разработчикам ОВОС, так и к членам экспертных (в т.ч. общественных) комиссий.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на литосферу (геологическую среду, включая подземные воды) Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Геологические и гидрогеологические особенности территории, геологические процессы и явления.

2. Оценка устойчивости грунтов и активности геологических процессов при техногенном воздействии.

3. Прогноз изменений геодинамических условий (изменения напряженности массива пород, возможность деформаций и т.д.).

4. Прогноз последствий теплового воздействия на грунты - изменение термодинамических условий (уровня сезонного протаивания, многолетней мерзлоты, активизация криогенных и других геологических процессов).

5. Прогноз влияния неблагоприятных геологических явлений и процессов на возможность проявления аварийных ситуаций.

6. Прогноз изменений гидрогеологических условий (усиление или ослабление водообмена, образование новых водоносных горизонтов, смешение вод, изменение уровней подземных вод, напоров, скоростей, направления движения, изменение газового и химического состава и температуры).

7. Прогноз возможного загрязнения и истощения подземных вод при техногенном воздействии.

8. Прогноз воздействия добычи минеральных и сырьевых ресурсов на различные компоненты природной среды.

9. Мероприятия по рациональному использованию недр.

10. Мероприятия по защите подземных вод от загрязнения и истощения.

11. Мероприятия по локализации последствий аварийных ситуаций, нарушающих геологическую среду.

12. Рекомендации по составу и размещению режимной сети скважин для изучения, контроля и оценки состояния горных пород и подземных вод в процессе эксплуатации намечаемого строительства.

13. Предложения по возможно более полному извлечению и комплексному использованию полезных ископаемых из недр, исключающих снижение качества запасов подземных ископаемых на соседних участках и в районе их добычи (в результате обводнения, выветривания, окисления, возгорания и т.д.).

14. Обоснование возможности подземного захоронения вредных веществ и отходов производства.

15. Объем природоохранных мероприятий и оценка стоимости мероприятий по охране геологической среды и мер по предотвращению и ликвидации аварийных ситуаций.

5.6. Оценка воздействия на почвенный покров

Широко известно знаменитое определение В.В. Докучаева: «Почва – зеркало ландшафта». Это справедливо как для естественных, не затронутых антропогенной деятельностью почв, так и для почв, подвергающихся антропогенному воздействию. Воздействия на все компоненты ландшафта как в зеркале отражаются в почве (педосфере). Именно поэтому анализ состояния и динамики почвенного покрова может многое сказать о современной и будущей экологической ситуации в районе той или другой человеческой деятельности. Кроме того, почва выполняет важные санитарные функции и является мощным фактором перераспределения прямого влияния техногенной деятельности на ландшафт.

Почва представляет собой особое природное тело, отличающееся от горных пород, на которых оно формируется. Главным свойством, отличающим почву, является её плодородие. Это позволяет отнести почвенный покров к экономической категории производительных сил, в особенности в тех районах, где сочетание тепла и влаги позволяют реализовывать её как производительную силу. Именно в этих земледельческих районах почва представляет особую ценность, и охрана её от загрязнения, истощения, механического разрушения и прямого изъятия (уничтожения) из производства биомассы ‑ главная цель оценки воздействия планируемой деятельности на почвенный покров региона.

Снижение плодородия почвы может происходить под влиянием различных воздействий, которые можно разделить на два типа ‑ механические и химические.

Механические воздействия включают в себя разрушение плодородного (гумусового) горизонта под влиянием прямого или косвенного антропогенного воздействия (прежде всего строительные работы, сопровождающиеся передвижениями тяжелой техники, ветровая и водная эрозия, активизирующаяся после уничтожения растительного покрова или неправильной распашки и др.), а также прямое изъятие земель в постоянное и временное пользование. Земли временного отвода впоследствии подлежат рекультивации.

Задача экологической оценки и прогноза заключается в том, чтобы путем всестороннего анализа планируемой деятельности подтвердить (или сформировать) оптимальное для данного проекта решение о выборе земельного участка, соотношении земель постоянного и временного отвода, методах строительства и эффективных методах послестроительной рекультивации.

При этом оценке подлежат не только почвы сельскохозяйственного использования, но и почвы под естественными фитоценозами всех географических зон и провинций, т.к. нарушения почвенно-растительного покрова могут повлечь за собой цепочку взаимосвязанных негативных экологических последствий (растепление многолетней мерзлоты; уничтожение местообитаний растений и животных и как следствие ‑ сокращение их ареалов; ухудшения качества и понижение уровня грунтовых вод и т.д.).

Ресурсные критерии оценки состояния педосферы как раз включают параметры изменения (механических и других) и являются одними из основных для оценки состояния экосистемы в целом, так как ухудшение свойств почв является одним из наиболее сильных факторов формирования зон экологического риска, кризиса или бедствия. Прежде всего, это снижение плодородия почв на большой площади и с высокой скоростью. Почвенно-эрозийные критерии связаны с вторично антропогенными геоморфологическими процессами, ускоренными антропогенной деятельностью. Эти процессы распространены и в естественных условиях, но нарушение человеком устойчивости растительного и почвенного покрова (вырубкой лесов, распашкой почв, перевыпасом пастбищ и т.п.) вызывают их значительное ускорение и расширение их площади.

Одним из интегральных показателей загрязнения почвы является её фитотоксичность (свойство почвы подавлять рост и развитие высших растений) и генотоксичность (способность влиять на структурно-функциональное состояние почвенной биоты).

Индикационные критерии как раз и основаны обычно на генотоксичности, будучи реализованы через уровень активной микробной биомассы (снижение в число раз), биомассу почвенной мезофауны и численность почвенных микроартопод (колемболы, арбатидные клещи и т.д.) от нормального природного уровня. Они ранжируются по классам и одновременно могут быть использованы для оценки состояния экосистемы. Все они направляют ход почвенных микробиологических процессов и осуществляют так называемые «цепи питания» в почвах, что позволяет считать учет их численности и массы интегральным показателем. Пример выделения зон экологического состояния по основным почвенным критериям приведен в табл. 11.

Химические воздействия на почву, т.е. её загрязнение, осуществляемое различными источниками и способами, также может носить прямой и косвенный характер. Прямое загрязнение происходит путем непосредственного попадания загрязняющих веществ на её поверхность (свалки твердых бытовых отходов, розливы нефти, буровых растворов и др. загрязняющих жидкостей, внесение удобрений, обработка различными ядохимикатами и т.д.). Косвенное загрязнение связано с аэрогенным выпадением загрязняющих веществ, с подпиткой загрязненными грунтовыми водами. Любой из этих видов загрязнений или несколько из них могут быть связаны с планируемым видом антропогенной деятельности.

Таблица 11

Почвенные критерии нарушения экосистем

Оценочные показатели Классы геоэкологического состояния педосферы
норма (Н) риск (Р) кризис (К) бедствие (Б)
Плодородие почвы (в % от потенциального) более 85 85- 65 65-25 менее 25
Содержание гумуса (в % от первоначального) более 90 90-70 70-30 менее 30
Площадь вторичного засоления почв (в %) менее 5 5-20 20-50 более 50
Глубина смытости почвенных горизонтов гор. А1 или 0,5 гор. А гор. А, частично АВ гор. А и В
Площадь ветровой эрозии (полн. сдутые почвы, в %) менее 5 10-20 20-40 более 40

Многообразие характеристик загрязнения почв рассматривается в нормативных документах. Анализ публикаций позволил предложить укрупненные показатели оценки техногенной загрязненности почв с ранжированием значений по классам, приведенным в табл. 12.

Таблица 12

Укрупненные показатели оценки техногенной загрязненности почвенного покрова с ранжированием значений по классам состояний

Оценочные показатели Классы геоэкологического состояния педосферы
норма (Н) риск (Р) кризис (К) бедствие (Б)
Содержание легко растворимых солей (вес. %) менее 0,6 0,6-1,0 1,0-3,0 более 3,0
Содержание токсичных солей (весовых %) менее 0,3 0,3-0,4 0,4-0,6 более 0,6
Содержание пестицидов и др. ядохимикатов (в ПДК) менее 0,1 1,0-2,0 2,0-5,0 более 5,0
Содержание поллютантов (в ПДК) менее 0,1 1,0-3,0 3,0-10,0 более 10,0
Содержание нефти и нефтепродуктов (вес. %) менее 0,1 1,0-5,0 5,0-10,0 более 10,0

Задача оценки возможного загрязнения почв и его последствий на основании биогеохимических свойств данной конкретной почвы ‑ выявить закономерности миграции, трансформации и аккумуляции ЗВ в почве (и сопряженных с нею других компонентов ландшафта) и установить возможные негативные последствия с целью их предотвращения (или минимизации).

Любая почва (как и другие компоненты окружающей среды) обладает способностью к самоочищению, и более того, является буфером между антропогенным загрязняющим воздействием на другие компоненты ландшафта, в т.ч. и в первую очередь, на живые организмы. Почва является главной ареной биогеохимического круговорота, в результате которого токсичные соединения могут превращаться в безвредные, в т.ч. нерастворимые формы, оседать на геохимических барьерах или, наоборот, попадая в почву в микроскопических количествах, аккумулироваться в растениях и, передаваясь по трофическим цепям, приносить в коечном итоге вред здоровью людей. Законы самоочищения почв и трансформации вещества в них определяются факторами почвообразования (соотношением тепла и влаги, физико-химическими свойствами почвообразующих пород, положением в рельефе, характером растительности и пр.), а также качеством и количествами ЗВ.

Критерием загрязнения почв также является соответствующая ПДК вредных веществ или предельно допустимый уровень (ПДУ) загрязнения почвы, разработанные пока ещё для сравнительно небольшой группы ЗВ. В случае отсутствия ПДК для какого-либо элемента (вещества) критерием его предельно допустимого содержания в почве служит его кларк, т.е. среднее содержание в земной коре.

Разработка оценок воздействия антропогенной деятельности на почву ‑ ещё более сложная задача, чем оценка воздействия на атмосферу, по причине пока ещё недостаточной изученности техногенных потоков вещества в различных типах почв.

Учитывая всё вышеуказанное, при обосновании и оценке воздействия на педосферу (состояние почв) Регламентом проведения ГЭЭ рекомендуется рассматривать следующее.

1. Характеристика почвенного покрова в зоне воздействия объекта (плодородие, физико-химические свойства), оценка состояния почвенного покрова.

2. Ограничения по использованию земель, включая ухудшение качественного состояния земель в зоне воздействия объекта.

3. Характеристика воздействия на почвенный покров, включая загрязнение территории промышленными отходами (вид, класс опасности, токсичность, физическое состояние, объем отходов, занимаемая отходами площадь).

4. Согласованные решения по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород при строительстве объекта.

5. Прогноз изменений свойств почв и грунтов, обусловленных:

– перепланировкой поверхности территории и созданием новых форм рельефа;

– изменением активности природных процессов;

– загрязнением территории при строительстве и эксплуатации объекта, включая загрязнение отходами строительства и временными (сопутствующими) производствами.

6. Прогноз изменений свойств почв при возникновении аварий.

7. Последствия возможных изменений почв при реализации проектных решений.

8. Мероприятия по санации загрязненных почв в зоне возможного воздействия.

9. Мероприятия по утилизации и захоронению отходов.

10. Мероприятия по инженерной защите территории от подтопления и затопления.

11. Мероприятия по восстановлению нарушенных земель (проектные решения по отводу талого и ливневого стока, техническая и биологическая рекультивации), сроки восстановления.

12. Эффективность природоохранных мероприятий по санации почв и рекультивации нарушенных земель.

13. Определение размера убытков, причиняемых основным землепользователям при реализации проекта, включая упущенную выгоду.

14. Объем природоохранных мероприятий и оценка стоимости компенсационных мероприятий и мер по рекультивации, восстановлению и охране почв, включая аварийные ситуации.

5.7. Оценка воздействия на растительный покров

Растительный покров – неотъемлемая часть природной среды, благодаря которой осуществляется процесс обмена веществ в природе, обеспечивающий возможность самого существования жизни. В то же время растительный покров один из наименее защищенных компонентов ландшафта, повсеместно подвергающийся воздействию антропогенной деятельности и страдающий от нее в первую очередь. Часто разрушение растительного покрова приводит к созданию условий, несовместимых с жизнью человека, формируются ситуации, определяемые как экологическая катастрофа.

Территории, где сохраняется необходимый научно обоснованный баланс между нарушенными и ненарушенными участками растительности, имеют шанс избежать катастрофы. Кроме


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: