Основные сведения о строении и физиологии нервной системы человека

Клинические аспекты логопедии являются основными при изучении и оказании педагогической помощи лицам с синд­ромами нарушений речи, возникающих при поражении того или иного участка мозга. В этих целях необходима качест­венная оценка признаков речевой патологии в сопоставлении с локализацией повреждения ЦНС. Такой анализ позволяет психолого-педагогическим методам реабилитации быть более оправданными и целенаправленными.

С развитием нейробиологии — науки о строении и функции нервной системы человека — во многом становятся понятны­ми особенности развития организма человека и его речи.

В основе современного представления о структуре и функ­ции центральной нервной системы (ЦНС) лежит нейронная теория, согласно которой мозг представляет собой функци­ональное объединение отдельных клеточных элементов — нейронов.

Через пирамидный (кортиконуклеарный) путь осущест­вляется регуляция произвольных движений моторными от­делами коры, а значит, непосредственно обеспечивает произ­вольные движения.

Нейрон — это нервная клетка, обладающая способностью генерировать возбуждение в ответ на раздражение и переда­вать его другим нейронам или эффекторным органам (мыш­цам, железам). По функции нейроны разделяются на: аф­ферентные (чувствительные), эфферентные (двигательные), вставочные.

Аксоны афферентных нейронов воспринимают сигналы, возникающие в рецепторных окончаниях органов чувств (мышц в т.ч.), и проводят их в ЦНС.

Аксоны эфферентных нейронов, например, выходят за пределы ЦНС и иннервируют скелетную мускулатуру. Мно­гие эфферентные нейроны передают сигналы к органам и мышцам посредством других нервных клеток и их отростков (например, от пирамидных клеток моторной области коры импульсы поступают к мотонейронам продолговатого и спин­ного мозга и далее по периферическим нервам к мышцам).

Вставочные нейроны обеспечивают связь между афферен­тными и эфферентными нейронами.

Нейроны, в т. Ч. Моторные ядра, или мотонейроны, яв­ляясь клеточными элементами ЦНС, обладают особым видом спонтанной электрической активности, имеющей эндогенное происхождение. Эта врожденная ритмическая активность превращает нейрон в генератор возбуждения (пейсмекерный механизм). Уровень эндогенного возбужде­ния нейрона может повышаться и снижаться в зависимос­ти от афферентных воздействий на нейрон. Таким образом, пейсмекерная активность мотонейронов черепно-мозговых нервов и периферических нервов спинного мозга существенно зависит от влияния со стороны корковых нейронов через кортиконуклеарный путь. Чем меньше сила влияния кор­ковых отделов мозга, тем выше пейсмекерная активность нейронов, находящихся в продолговатом и спинном мозге.

В зрелом состоянии головной и спинной мозг, а также весь аппарат периферических нервов с рецепторными органами (т.е. Органами, в которых заканчиваются нервные окончания) представляют целостную систему, которая анатомически и функционально делится на большое число звеньев. ЦНС вклю­чает в себя те части нервной системы, которые лежат внутри черепа и позвоночного столба. Нервы, лежащие вне черепа или позвоночника, представляют периферическую нервную систе­му. ЦНС подразделяется на спинной и головной мозг (рис. 2).

Спинной мозг является цилиндрическим образованием, которое состоит из серого вещества тел нейронов, сконцент­рированных в центральной части мозга в виде «бабочки». Пе­редние рога «бабочки» содержат нейроны, эфферентные аксо­ны которых направляются в составе спинно-мозговых нервов к мышцам, т.е. В составе периферических нервов. Задние рога содержат клетки промежуточных нейронов, к которым подходят афферентные волокна, входящие в состав перифе­рических нервов и доставляющих чувствительные импульсы с периферии. Спинно-мозговые нервы I-III уровня шейного отдела позвоночника иннервируют диафрагму.

Головной мозг подразделяется на задний, средний, проме­жуточный и передний мозг.

Задний мозг состоит из продолговатого мозга, мозжечка и варолиева моста.

Продолговатый мозг является нижним отделом головного мозга.

На передней поверхности продолговатого мозга имеются два вертикальных валика, получивших название пирамид. По бокам от них расположена другая пара валиков, обознача­емых как оливы.

Продолговатый мозг включает ряд ядер, которые обслужива­ют сосудисто-двигательный и дыхательный центр, контролиру­ющие сужение и расширение сосудов, а также сердечный ритм. Ядра продолговатого мозга принимают участие в обеспечении таких сложных рефлекторных актов, как сосание, жевание, глотание, рвоты, чихание, моргание (функции блуждающего, языкоглоточного, подъязычного и тройничного нервов).

Центры продолговатого мозга в процессе эмбриогенеза развиваются и созревают раньше, чем другие отделы моз­га. О сохранности центров продолговатого мозга в процес­се внутриутробного развития свидетельствует крик ребенка непосредственно в процессе родов. Наличие регуляторных функций дыхания и сердца, сосательного рефлекса в первые минуты и часы жизни. Нарушение этих функций у ребенка при рождении свидетельствует о поражении ствола мозга.

В мозжечке различают два полушария и его центральную часть — червь.

Мозжечок обеспечивает точность целенаправленных дви­жений, координирует действия мышц — антогонистов (мышц противоположного действия), регулирует мышечный тонус, поддерживает равновесие.

Обеспечение этих функций осуществляется благодаря тес­ным связям мозжечка со всеми структурами мозга: с чувстви­тельной сферой (проприорецепция — положение туловища в пространстве), с экстрапирамидной системой, с ретикуляр­ной формацией ствола, с лобными, затылочными и височны­ми отделами коры головного мозга.

Мозжечок имеет тесные связи. Корково-мостомозжечковые пути (лобно-мостомозжечковый и затылочно-мостомозжечко-вый) проходят из коры головного мозга к собственным ядрам.

Варолиева моста, а затем к коре мозжечка противоположной стороны. Эти импульсы корригируют деятельность экстрапи­рамидной системы мозжечка — это нисходящие пути. Восхо­дящие пути, которые несут проприоцептивную информацию в мозжечок, сформированы в переднеспинно-мозжечковый путь (начинается в проприорецепторах и достигает червя моз­жечка) и заднеспинно-мозжечковый (путь также начинается в проприорецепторах и также достигает червя мозжечка).

Таким образом, мозжечок вместе с лобной корой больших полушарий соучаствует в формировании моторных программ на основе импульсов, поступающих в него от мышечно-суставных проприорецепторов, а также от вестибулярных зри­тельных и тактильных анализаторов.

Варолиев мост представляет собой крупное поперечно-волокнистое образование, охватывающее передневерхнюю часть продолговатого мозга. Здесь находятся ядра: двига­тельное ядро отводящего нерва (VI пара), двигательное ядро тройничного нерва (V пара), два чувствительных ядра трой­ничного нерва ядра слухового и вестибулярного нервов, ядро лицевого нерва (VII пара), собственные ядра моста, в которых переключаются корковые пути, идущие в мозжечок.

Через Варолиев мост проходит большое количество прово­дящих путей. К основным относятся: двигательный кортиконуклеарный (пирамидный) от коры к мозжечку и общий чувствительный путь.

В функцию моста входит проведение координирующих им­пульсов от одного полушария мозжечка к другому для обес­печения согласованных сокращений/расслаблений мышц с обеих сторон тела и связи коры больших полушарий с са­мим мозжечком.

Средний мозг расположен под мостом и включает ножки мозга и четверохолмие. В каждой из ножек мозга, помимо проводящих волокон, располагаются богатые пигментом чер­ная субстанция и красное ядро, имеющие отношение к регу­ляции движений. Черное вещество и красное ядро являются частью паллидарной системы. Вместе с ретикулярной форма­цией принимает участие в регуляции мышечного тонуса при выполнении точных и плавных движений пальцев рук.

Важнейшей функцией этого отдела мозга является пере­распределение мышечного тонуса. Он участвует в реализа­ции статических рефлексов (положение тела в пространстве) и статокинетических рефлексов (перемещение тела).

Промежуточный мозг включает два отдела: зрительный бугор (таламус) и подбугорную область (гипоталамус).

Таламус выполняет функцию коллектора и коммутатора всех возбуждений, поступающих от рецепторов в головной мозг (кроме обоняния), т.е. Производит предварительный анализ и синтез импульсов от всех органов чувств и через синаптические связи направляет их в различные зоны мозга, в том числе коры больших полушарий.

Гипоталамус представляет собой относительно узкий слой мозговой ткани. В нем расположены многочисленные высокодифференцированные ядра, регулирующие темпера­туру тела, аппетит, водный баланс, углеводный и жировой обмены, сосудистый тонус и другие вегетативные функции, которые связаны с обменом веществ. Здесь же находятся цен­тры, осуществляющие регуляцию сна, сексуального и эмо­ционального поведения. Гипоталамус играет важнейшую роль в регуляции постоянства внутренней среды организма (гомеостаза). Кроме того, к структурам гипоталамуса анато­мически относят гипофиз — железу внутренней секреции и зрительную хиазму — место неполного перекрестья зритель­ных нервов.

Все отделы между спинным мозгом и промежуточным моз­гом образуют ствол мозга, т.е. В его состав входят средний мозг, Варолиев мост, продолговатый мозг. Мозговой ствол яв­ляется промежуточной инстанцией. В нем проходят из спин­ного мозга в большой мозг афферентные волокна, а из боль­шого мозга к передним рогам спинного мозга эфферентные волокна. В стволе находятся ядра III и XII пар черепно-мозго­вых нервов, а также ядерные образования экстрапирамидной системы. Здесь имеются важнейшие центры вегетативной иннервации, которые контролируют дыхание и сердечно-со­судистую деятельность.

В массе ствола мозга расположена ретикулярная (сетевидная) формация, волокна которой переплетаются со всеми проходящими через ствол мозга афферентными и двигатель­ными путями. Ядерные образования ретикулярной формации, их многочисленные нейроны дают начало эфферентным свя­зям, которые подразделяются на: нисходящие и восходящие.

Нисходящая система состоит из активирующих и тормоз­ных волокон, которые регулируют деятельность спинного мозга. Активирующее влияние проявляется повышением мы­шечного тонуса, а тормозящее — снижением тонуса мышц.

Основная масса клеток ретикулярной формации образует систему вставочных нейронов, которые обеспечивают совмес­тную координированную деятельность различных отделов нервной системы.

Она оказывает энергорегулирующее воздействие на кору больших полушарий и контролирует рефлекторную деятель­ность мозга.

Передний мозг состоит из двух полушарий, покрытых се­рым веществом — корой. У человека под влиянием социаль­ной среды в процессе онтогенеза формируются особые струк­туры коры больших полушарий мозга, наиболее дифференци­рованный отдел центральной нервной системы. В самой ниж­ней части премоторной извилины левого полушария (глав­ным образом, у правшей) расположена височная область, в центре которой находится зона Брока, которая реализует двигательную сторону речи. На заднем участке височной из­вилины, на стыке первичной слуховой и двигательной коры находится зона Вернике, реализующая восприятие речи.

Многочисленные современные данные свидетельствуют о том, что организация речи осуществляется при взаимодо­полняющем постоянном взаимодействии двух полушарий. Неироанатомические различия правого и левого полушария отмечены как в речевых зонах, так и в других структурах, в первую очередь затылочных и верхнетеменных. Три основ­ные модальности (ощущение звука, света, осязание) наибо­лее представлены в левой гемисфере (у правшей). С разны­ми полушариями связан и характер эмоционального реаги­рования. Асимметрия эмоциональной сферы выражается в преимущественной «ответственности» левого полушария за формирование положительных эмоций, а правого — отрица­тельных. Повреждение левого полушария на ранних этапах онтогенеза не приводит к речевым расстройствам (например, алалии), так как в правом полушарии имеются неироанатомические предпосылки для развития «речевых» зон. В то же время при поражении правого полушария нарушаются невер­бальные психические функции, которые не компенсируются левым полушарием.

С деятельностью правого полушария связывают регулиро­вание активности речевых центров левого полушария, обес­печивание помехоустойчивости речевого слуха, интонационные характеристики речи, конкретность и предметность высказываний. С деятельностью левого полушария связаны главным образом языковые уровни: фонологическая система языка, морфологический механизм словообразования, син­таксическое структурирование высказывания, кратковре­менная и долговременная словесная память. Отсюда понятно положительное воздействие на динамику речевого развития при адекватном сенсорном воспитании.

В процессе реализации любой задачи, требующей сенсор­ного или моторного решения (например, чтение, письмо или любое другое произвольное действие), вовлекаются в деятель­ность структуры обоих полушарий. Следует более четко пред­ставлять то, что межполушарная асимметрия в деятельности мозга имеет сложный характер, который до настоящего вре­мени полностью не изучен.

В глубине каждого полушария расположены проводящие волокна и подкорковые ядра (базальные ганглии). Наиболее крупным образованием является полосатое тело (стриатум), которое состоит из хвостатого ядра, скорлупы и бледного шара (паллидум). Эти ядра объединяются общим названи­ем — стриопаллидарная система. За счет стриопаллидарной системы у новорожденного осуществляются диффузные мас­совые движения тела (рис. 3).

После созревания моторных областей коры больших по­лушарий стриопаллидарная система начинает обеспечивать «готовность» к совершенствованию движений, а именно, перераспределяет и согласует тонус мышц, что позволяет про­извольным движениям быть быстрыми, точными и строго дифференцированными.

Со стриопаллидарной системой, являющейся эфферент­ным звеном в нервной системе, функционально тесно связан зрительный бугор (таламус). На уровне таламуса происходит формирование сложных рефлексов смеха и плача.

Каждое полушарие головного мозга разделено глубокими бороздами на большие участки, называемые долями. Таки­ми бороздами являются: боковая (сильвиева борозда), цент­ральная (роландова борозда) и теменно-затылочная борозда. Продольная щель мозга делит его на два полушария. Каждое полушарие состоит из пяти долей: лобная, теменная, височ­ная, затылочная и долька, скрытая на дне сильвиевой бороз­ды — островок.

Оба полушария объединены между собой спайками, наибо­лее крупная из которых мозолистое тело, которое расположе­но выше таламуса.

Совокупность отделов мозга, включающая внутреннюю поверхность полушарий (медиобазальные отделы) и их глу­бокие структуры, получила название лимбической системы. Традиционно в лимбическую систему включают миндалевид­ное тело, гипоталамус и ретикулярную формацию среднего мозга, объединенные под названием — глубинные структу­ры мозга. Особенностью лимбической системы является то, что между составляющими ее структурами имеются простые двусторонние связи и сложные пути, образующие множества замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и, тем самым, сохранение в ней единого состояния, а также навязывания его другим системам мозга. Круги воз­буждений разного функционального назначения связыва­ют лимбическую систему со многими структурами большо­го мозга. Подавляющее большинство структур лимбической системы принимает участие в функциональной организации эмоций, что предполагает их влияние на соответствующие ве­гетативные изменения, регулируемые гипоталамусом.

Кора головного мозга является наиболее дифференциро­ванным отделом ЦНС, состоящим из шести слоев нейронов разного типа. Для коры характерно обилие межнейронных связей. Особо многочисленные контакты имеются в сенсомоторных отделах, что позволяет координировать моторную функцию с разнообразными воздействиями как из внешней, так и внутренней среды организма.

Различные структуры мозга созревают неравномерно, и по­этому готовность к выполнению свойственных им функций наступает в разные возрастные периоды. Сначала происходит созревание глубоких структур, подкорковых образований, отвечающих за принципиальные стороны жизнедеятельнос­ти. Затем созревают так называемые первичные зоны мозга, в которых заканчиваются нервные волокна, идущие от пери­ферических частей анализаторов. Те и другие являются почти сформированными к моменту рождения. В первый год жизни они функционально оформляются, создавая основу сенсомоторной стадии развития.

Созревание ассоциативных зон мозга осуществляется в пе­риод от двух до пяти лет. В последнюю очередь развиваются лобные доли мозга, морфологическое структурирование ко­торых происходит в возрасте от 12 до 14 лет.

Моторика представляет собой всю сферу двигательных функций организма, включающая биомеханические, физио­логические и психологические аспекты.

Движения являются главным средством взаимодействия организма человека с окружающей средой. Основные типы движений человека сводятся к четырем типам активности: обеспечение позы и равновесия, локомоция и произвольные движения. Произвольными движениями могут быть названы разнообразные двигательные акты, совершаемые человеком в процессе повседневной жизни. Они являются целесообраз­ными и носят навыковый (условно-рефлекторный) характер, в отличие от врожденных, безусловно-рефлекторных мотор­ных реакций (чихание, глотание и т.д.). ЦНС снабжается информацией о состоянии периферического двигательного аппарата с помощью разного вида чувствительных нервных окончаний (рецепторов), которые обеспечивают т.н. Проприоцептивную чувствительность.

К центральному механизму произвольных движений отно­сится кортиконуклеарный (пирамидный) путь, который идет от двигательной зоны коры головного мозга и заканчивается в ядрах ствола к двигательным ядрам черепно-мозговых не­рвов и ядрах спинного мозга (мотонейроны спинного мозга).

Праксис — это такой функциональный уровень в органи­зации произвольных действий, где их координация обуслов­ливается (афферентируется) обобщенными топологическими признаками объекта, т.е. Смысловой последовательностью элементов движения (застегнуть пальто, налить воды в чаш­ку и т.п.). Можно назвать это символичным уровнем движе­ний (Н.А. Бернштейн, 1946).

В корковом отделе речедвигательного анализатора доми­нантного полушария имеются зоны, обеспечивающие подго­товку отдельных сторон речедвигательного акта:

• оценка исходного положения органа периферического аппарата (по сумме кинестетических импульсаций);

• организация речедвигательного акта во времени и как планирования серии последовательных сокращений от­дельных мышечных групп этого органа (например, отдельных групп мышц языка);

• программа речедвигательного акта в пространстве дви­жения отдельного органа (например, подъем кончика языка к альвеолам).

Эти три программы осуществляются в трех различных зо­нах коркового речедвигательного анализатора.

По А.Р. Лурия, в реализацию двигательного акта, помимо собственно моторных зон, включается почти вся кора. Пере­дние отделы мозга связаны с построением кинетических про­грамм двигательного акта, а задние — с их кинестетическим и пространственно-обусловленным обеспечением.

Кинестетический фактор обеспечивает передачу и ин­теграцию сигналов, поступающих от рецепторов, располо­женных в мышцах, суставах и сухожилиях, которые несут информацию о взаимном расположении органов. Эти сведе­ния принимает передняя часть теменной области, куда при­текают также тактильные и зрительные импульсы, что делает информацию полной. Исключение составляет речевая артикуляция, которая функционирует на кинестетической основе без участия зрения (тем не менее, в онтогенезе дети с нормальным зрением начинают говорить раньше, чем дети с нарушенным зрением). Информацию о речевой моторике, помимо кинестезии, у лиц с развитой речью дает акустичес­кий контроль.

Кинетический фактор реализуется в двигательных актах, которые осуществляются в форме кинетических и мелодических схем. В отношении речевой моторики этот фактор обеспе­чивает плавную смену артикуляции в процессе произнесения и перехода от звука к звуку в слове, от слова к слову. При на­рушении кинетического фактора возникают «застревания» на фрагментах движения, что приводит к неоднократному повто­рению этого фрагмента. В устной речи это проявляется в пов­торении звуков и слогов, букв и их элементов при письме.

Конкретные эфферентные механизмы исполнения движе­ний обеспечиваются пирамидной и экстрапирамидной систе­мами, корковые отделы которых составляют единую сенсомоторную зону коры (рис. 4).

Пирамидная система (центральный двигательный путь) участвует в организации точных пространственно-ориенти­рованных движений и полностью подчинена произвольному контролю. Клетки центральных двигательных нейронов со­средоточены главным образом в передних центральных из­вилинах, а также в теменных долях коры. Кортиконуклеарный путь заканчивается в моторных ядрах черепно-мозговых нервов, которые находятся в варолиевом мосту, продолгова­том и спинном мозге. На границе продолговатого и спинно­го мозга большая часть волокон пирамидного пути правого и левого полушария перекрещивается. Ядра тройничного, языкоглоточного, блуждающего и часть ядра лицевого нерва получают импульсы от обоих полушарий мозга, так как под­ходящие к ним волокна пирамидного пути перекрещиваются неполностью. Именно этим объясняется то, что односторон­ние очаговые поражения пирамидных путей не вызывают серьезных функциональных нарушений жевания, глотания и голосообразования. Исключение составляют волокна, не­сущие корковые импульсы к ядру подъязычного нерва, ко­торые полностью перекрещиваются в продолговатом мозгу, непосредственно перед вступлением их в ядро. Поэтому в слу­чае поражения мозга на уровне варолиева моста и выше спас­тический паралич мышц языка наблюдается на стороне, про­тивоположной очагу поражения (т.е. При этом язык откло­няется в сторону очага поражения). Остальная часть волокон заканчивается в моторных ядрах спинного мозга.

Экстрапирамидная система обеспечивает автомати­зированные движения. В основном она управляет непроиз­вольным компонентом движений: поддержание позы, физиологические синергии, общую согласованность двигатель­ных актов, их пластичность. Традиционно в ней различают корковый и подкорковый отделы (стриопаллидарная систе­ма, красное ядро и черная субстанция, мозжечок и ретику­лярная формация ствола мозга и их корковые отделы).

Результаты исследования движений позволили Н.А. Берн-штейну (1965) сформулировать общие представления и мно­гоуровневой иерархической системе координации движений. В соответствии с ними система управления движениями со­стоит из следующих уровней: А — уровень палеокинетических регуляций, он же руброспинальный уровень ЦНС. Дей­ствия этого уровня полностью непроизвольны; В — уровень синергии, он же таламопаллидарный уровень. Движения этого уровня характеризуются стереотипностью, в обобщен­ном виде это афферентация собственного тела. Этот уровень обеспечивает такие врожденные особенности моторики, как ловкость, грациозность, пластику. Нарушения этого уров­ня ведут к насильственным движениям; С — уровень про­странственного поля, он же пирамидно-стриарный. Этот уро­вень обеспечивает все переместительные движения: ходьба, прыжки и т.д. Патология этого уровня сопровождается нару­шениями пространственной координации (атоксия), равнове­сия, локомоции и точности; D — теменно-премоторный или уровень предметных действий, которые не являются врож: денными, а формируются и совершенствуются в процессе на­копления опыта; Е — группа высших кортикальных уровней символических координации (письма, речи и т.д.).

На рис. 5 представлена схема основных центров и проводя­щих путей мозга с распределением их по уровням.

А.Р. Лурия (1969) разработал общую структурно-функци­ональную модель мозга как органа, с которым связана психо­моторная деятельность человека. Работа мозга обеспечивает­ся тремя блоками, которые характеризуются особенностями строения и участия в реализации психических функций.

I блок — энергетический. Он включает ретикулярную формацию, ствол мозга, неспецифические структуры сред­него мозга, лимбическую систему, медиобазальные отделы коры лобных и височных долей. Блок реглирует «тонус моз­га», необходимый для выполнения психической деятель­ности, т.е. Он поддерживает бодрствующее состояние и со­знание в целом.

II блок — блок приема, переработки и хранения экстеро-цептивной (внешней) информации. В него включаются цент­ральные части основных анализаторных систем: зрительной, слуховой и кожно-кинестетической. Корковые зоны этих ана­лизаторных систем расположены в затылочных, теменных и височных долях мозга (первичные корковые поля). Эти зоны коры называются проекционными.

Вторичные корковые поля представляют клеточные струк­туры, в которых происходит усложнение переработки пер­вичной информации благодаря прохождению афферентных импульсов через ассоциативные ядра таламуса. Их функци­ональная организация на уровне психики эквивалентна про­цессу восприятия.

Первичные и вторичные поля относятся к ядерным зонам анализаторов, их нейроны модально специализированы.

Третичные поля — ассоциативные; расположены на гра­нице затылочных, височных и заднецентральных отделов коры. Их функция состоит в интеграции возбуждений, при­ходящих от вторичных полей всего комплекса анализаторов. Это обеспечивает возможность реакции третичных полей на обобщенные признаки объектов и явлений.

III блок — блок программирования, регуляции и контроля за протеканием психической сознательной деятельности. Он включает моторные, премоторные и префронтальные отде­лы коры лобных долей мозга. Основная функция этого блока представляет собой программирование психического акта и развертки последовательности его реализации во време­ни.

Работа каждого блока не является автономной, а представ­ляет собой результат координированного взаимодействия всех трех структур. Итогом деятельности этой системы явля­ется нерасчленяемая и неосознаваемая моторная активность и в целом психическая жизнь. Эти положения А.Р.Лурия полностью относятся к так называемым речевым структу­рам. Было установлено, что при возникновении патологии в различных участках коры, связанных с речью, их функции берут на себя сохранившиеся отделы как левого, так и пра­вого полушария. Таким образом, речевые структуры мозга обладают широкой распределенностью и полифункциональ­ностью, определяемой возможностью их полного взаимодейс­твия. Однако существует обязательное звено, без которого осуществление речевого акта становится невозможным. Сре­ди прочих речевых структур у большинства взрослых людей таким звеном является левополушарная кора, при наруше­нии которой возникает афазия и корковая дизартрия (по Е.Н. Винарской, 2005).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: