double arrow

Пример К1а


Даны уравнения движения точки в плоскости :

,

( , – в сантиметрах, – в секундах).

Определить уравнение траектории точки; для момента времени с найти скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Решение:

1. Для определения уравнения траектории точки исключим из заданных уравнений движения время . Поскольку входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу

:

. (1)

Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим

, ,

следовательно,

.

Отсюда окончательно находим следующее уравнение траектории точки (параболы, рис. К1,а):

. (2)

Рис. К1,а
2. Скорость точки найдем по ее проекциям на координатные оси:

, ,

.

Для момента времени с: , , .

3. Аналогично найдем ускорение точки:

, ,

.

Для момента времени с: , , . (4)

4. Касательное ускорение найдем, дифференцируя по времени равенство:

Получим

,

откуда

. (5)

Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и ,(4). Подставив в (5) эти числа, найдем сразу, что при с: .




5. Нормальное ускорение точки . Подставляя сюда найденные при с числовые значения и , получим, что .

6. Радиус кривизны траектории . Подставляя сюда числовые значения и при с, найдем, что см.

Ответ: , , , , см.







Сейчас читают про: