Обратная решетка

Рассмотрим функцию координат , которая обладает трансляционной симметрией кристалла, например, локальную концентрацию электронов. Трансляционная симметрия функции означает, что эта функция не изменяется при сдвиге на произвольный вектор трансляции , т. е. (здесь n 1, n 2, n 3 — целые числа, , , — основные вектора трансляций). Иными словами, обладает свойством трехмерной периодичности кристалла. Такую функцию можно разложить в ряд Фурье:

(23)

где суммирование ведется по ''разрешенным'' значениям . Выясним, что это за разрешенные значения, т. е. какие могут присутствовать в разложении. Из свойства периодичности следует:

(24)

(индексы у вектора трансляции для краткости опускаем).

Два ряда Фурье равны в том и только том случае, если равны компоненты Фурье этих рядов (равны коэффициенты при с одинаковыми ). Поэтому

(25)

Отсюда следует, что разрешенные — это любые волновые вектора, удовлетворяющие условию

(26)

где N — целое число, а — произвольный вектор трансляции решетки:

(27)

Можно проверить, что условию (26) удовлетворяют все вектора вида

(28)

где m 1, m 2, m 3 — целые числа, а , , — основные вектора обратной решетки, связанные с основными векторами прямой решетки соотношениями:

(29)

Подведем итоги. Если использовать условия Борна-Кармана, то любая удовлетворяющая этим условиям функция может быть разложена в ряд Фурье:

(30)

Входящие в эту сумму значения вектора образуют в пространстве векторов (в обратном пространстве) кубическую решетку с ребром элементарного куба 2 π / L, где L — условная длина (в окончательных результатах L →∞). Эта решетка физического смысла не имеет и введена только для удобства.

Для функции, периодической с периодом кристалла, т. е. функции, удовлетворяющей условиям

(31)

где — любой вектор трансляции (вектор прямой решетки), фурье-разложение имеет вид:

(32)

где — вектора обратной решетки — вектора удовлетворяющие условиям , т. е.

(33)

где N — целое число. Нетрудно увидеть, пользуясь формулами (27) и (28), что N = m 1 n 1+ m 2 n 2+ m 3 n 3. Решетка в обратном пространстве, основанная на векторах , называется обратной решеткой кристалла. Обратная решетка имеет очень важный физический смысл (см. ниже). В частности, именно на этом понятии основаны закономерности рассеяния рентгеновских лучей.

Вид обратной решетки определяется видом прямой решетки, например, гранецентрированной решетке Браве соответствует объемоцентрированная обратная решетка. Прямая и обратная решетки обладают одинаковой точечной симметрией.

Объем примитивной ячейки кристалла v 0 — это объем параллелепипеда, построенного на векторах , , :

(34)

Используя определение векторов , , (29), можно найти объем примитивной ячейки обратной решетки:

(35)

Выше, при рассмотрении граничных условий Борна-Кармана, мы пришли к выводу, что в объеме обратного пространства Δ 3 k содержится разрешенных состояний волнового вектора (V — объем кристалла). Отсюда следует, что примитивная ячейка содержит

(36)

разрешенных состояний волнового вектора, т. е. столько, сколько примитивных ячеек содержит объем кристалла.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: