Лекция 6

Тема: Упругие волны

Вопросы: 1) Кинематика волновых процессов.

2) Стоячие волны

3) Акустические волны.

1. Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание начнет распространяться в среде с некоторой скоростью v. Процесс распространения колебаний называется волной. Частицы среды, в которой распространяется волна, не переносятся волной, они лишь совершают колебания около своих положений равновесия.

В зависимости от направления колебания частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Механические поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн. В продольных волнах вследствие совпадения направлений колебаний частиц и волны появляются сгущения и разрежения. На рисунке ниже показано движение частиц при распространении в среде поперечной волны.

Номерами 1,2,3 и т.д. обозначены частицы, отстоящие друг от друга на расстоянии, проходимом волной за четверть периода колебаний, совершаемых частицами. В начальный момент времени (t = 0) все точки расположены на прямой и ни одна из них не выходит из положения равновесия. Приведем точку 1 в гармоническое колебание с периодом Т, направленное перпендикулярно линии 1-5 (эта линия - ось у в нашем случае). Так как частицы среды связаны между собой силами упругости, они тоже приходят в колебания, но с некоторым запаздыванием. Через четверть периода точка 1 отклонится от линии равновесия на максимальное смещение х = А. Колебание начали все точки, лежащие слева от точки 2. По истечении четверти периода начнет подниматься вверх и точка 2. В момент времени, равный ½ Т первая точка вернется в положение равновесия х = 0, вторая точка достигнет максимального отклонения, и колебания дойдут до точки 3. При t=3/4Т точка 1 достигнет максимального отрицательного смещения х = - А, точка 2 вернется в положение равновесия и колебания достигнут точки 4. Наконец, за время, равное периоду t = Т, точка 1 вернется в положение равновесия, совершив полностью одно колебание. Колебания распространились до точки 5, все колеблющиеся точки образуют волну. При дальнейших колебаниях точек волновой процесс распространится вправо от точки 5. В рассмотренном случае образования поперечной волны каждая частица движется только вверх и вниз. У наблюдателя же создается впечатление, что «волна бежит», хотя в действительности происходит только передача движения от одной точки среды к другой.

В момент времени равный периоду (t = Т), точки 1 и 5, находящиеся в положении равновесия, имеют одинаковое смещение и одинаковое направление движения (вверх). Поэтому говорят, что точки I и 5 имеют одинаковые фазы. В отличие от этого точки 1 и 3, хотя смещения у них одинаковы, движутся в противоположные стороны, поэтому говорят, что точки 1 и 3 находятся в противоположных фазах. Расстояния между точками 1 и 5 определяет длину волны λ. Длиной волныλ называется, расстояние между ближайшими точками волны, колеблющимися в одинаковых фазах. Это расстояние, пройденное волной за период

λ = vТ

Так как период связан с частотой ν соотношением Т= 1/ν, то v= λ ν. Скорость волны определяется скоростью распространения колебаний в среде.

Скорость распространения волн тем меньше, чем инертнее среда, т.е. чем больше ее плотность. С другой стороны, она имеет большее значение в более упругой среде, чем в менее упругой. Скорость продольных волн определяется по формуле: , а поперечной:

где ρ- плотность среды, E - модуль Юнга, G - модуль сдвига. Так как для большинства твердых тел E>G то скорость продольных волн больше скорости поперечных.

Составим уравнение, которое позволит находить смещение всякой точки волны в любой момент времени. Пусть в некоторой точке упругой среды находится источник колебаний, которые можно задать уравнением

x = Asinωt

Волны со скоростью v распространяются от источника в среде. Частицы среды повторяют колебания источника, но с запозданием по времени тем большим, чем дальше частица находится от источника колебаний. Если источник направляет колебания в одну сторону (плоский), то уравнение волны примет вид

,

где V – скорость волны в среде, y - расстояние от источника колебаний до колеблющейся частицы.

Это уравнение можно записать в виде

Обозначим 2π/λ = k, эта величина называется волновым числом. Тогда получим следующее уравнение

которое называется уравнением плоской одномерной волны и определяет смещение любой точки среды, находящейся на расстоянии y от излучателя в данный момент.

Величина (ωt – ky) называется фазой волны. Зафиксируем какое-либо значение фазы, положив ее постоянной для данной точки = cons. Это выражение дает связь между временем t и координатой х, в которой зафиксированное значение фазы осуществляется в данный момент. Определив , мы найдем скорость, с которой перемещается данное значение фазы. Дифференцируя это соотношение, получим , откуда .

Таким образом, скорость распространения волны V в уравнении волны есть скорость перемещения фазы, поэтому ее называют фазовой скоростью.

Геометрическое место точек, колеблющихся в одной фазе, называется волновой поверхностью. Волновая поверхность, отделяющая часть пространства, в которой колебания происходят, от той части, где еще нет колебаний, называется фронтом волны. Именно фронт волны перемещается со скоростью равной фазовой скорости волны.

Если источник колебаний точечный, то от него распространяется волна во все стороны и фронт волны имеет вид сферы. Вблизи источника уравнение волны имеет вид

,

где r – расстояние от источника колебаний. Амплитуда сферической волны уменьшается при удалении фронта волны от источника колебаний.

Область пространства, участвующая в волновом процессе, обладает дополнительным запасом энергии. Эта энергия доставляется от источника колебаний в различные точки среды самой волны, следовательно, волна переносит энергию. Численное значение вектора плотности потока энергии определяется следующим образом:

где ΔW - энергия, переносимая за время Δt через площадку ΔS, перпендикулярную к направлению переноса энергии. Другими словами, этот вектор численно равен мощности передаваемой через единичную нормальную к направлению распространения энергии площадку. Направление вектора совпадает с направлением распространения энергии волны. Эта величина носит название вектора плотности потока энергии. Вектор плотности потока энергии был впервые определен русским ученым Н.А. Умовым и называется вектором Умова.

Среднее по времени значение плотности потока энергии равно:

,

где ρ – плотность среды.

2. Когда две одинаковые волны с равными амплитудами и периодами распространяются навстречу друг другу, то при их наложении возникают стоячие волны. Стоячие волны могут быть получены при отражении от препятствий. Допустим, излучатель посылает волну к препятствию (падающая волна). Отраженная от него волна наложится на падающую волну. Уравнение стоячей волны можно получить сложением уравнения падающей волны

и уравнения отраженной волны

Отраженная волна движется в направлении, противоположном падающей волне, поэтому расстояние х берем со знаком минус. Смещение точки, которая участвует одновременно в двух колебаниях, равно алгебраической сумме х=х1+х2. После несложных преобразований, получаем

Это уравнение стоячей волны определяет смещение любой точки волны.

Величина

не зависит от времени и определяет амплитуду любой точки с координатой y. Каждая точка совершает гармоническое колебание с периодом Т. Амплитуда Аст для каждой точки вполне определена. Но при переходе от одной точки волны к другой она изменяется в зависимости от расстояния y. Если придавать y значения, равные и т.д., то получим . Следовательно, указанные точки волны остаются в покое, т.к. амплитуды их колебаний равны нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания происходят с максимальной амплитудой, называются пучностями.

х

Расстояние между соседними узлами (или пучностями) называются длиной стоячей волны и равно λ/2 = λст, где λ - длина бегущей волны.

В стоячей волне все точки среды, в которой они распространяются, расположенные между двумя соседними узлами, колеблются в одной фазе. Точки среды, лежащие по разные стороны от узла, колеблются в противофазе -фазы их отличаются на π. т.е. при переходе через узел фаза колебаний скачкообразно меняется на π. В отличие от бегущих волн в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. В том случае, когда волна отражается от среды более плотной, чем та среда, где распространяется волна, в месте отражения возникает узел, фаза изменяется на противоположную. При этом говорят, что происходит потеря половины волны. Когда волна отражается от среды менее плотной в месте отражения, появляется пучность, и потери половины волны нет.

3. 3. Механические колебания в упругих средах вызывают распространение упругих волн, называемых акустическими колебаниями. Физическое понятие об акустических колебаниях охватывает слышимые и неслышимые колебания упругих сред. Распространяясь в пространстве, звуковые колебания создают акустическое поле.

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с  < 16 Гц (инфразвуковые) и  > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются. Наиболее чувствительно человеческое ухо к диапазону звуковых волн от 1000 до 3000 Гц.

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига.

Интенсивностью звука (или силой звука) называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица интенсивности звука в СИ — ватт на метр в квадрате (Вт/м2).

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсив­ностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие.

Звуковое давление человек субъективно воспринимает как громкость звука.
Увеличению громкости в 2 раза соответствует увеличение звукового давления в 10 раз (мощности в 100 раз), увеличению громкости в 3 раза соответствует увеличение звукового давления в 100 раз (мощности в 10 000 раз) и т.д. Таким образом, в психоакустическом восприятии звука наблюдается логарифмическая зависимость, что делает удобным использование относительных единиц – децибел. Один децибел - это минимальное изменение уровня звукового сигнала, которое способен воспринять слух человека.
Разница между минимальным и максимальным уровнями различимых звуковых ощущений называется динамическим диапазоном слуха, который составляет приблизительно 120дБ. Болевой порог соответствует звуковому давлению 200Па (на частоте 1кГц).

Звук характеризуется помимо громкости еще высотой и тембром. Высота звука — качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т. е. звук становится «выше». Характер акустического спектра и распределения энергии между определен­ными частотами определяет своеобразие звукового ощущения, называемое тембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустичес­кий спектр, т. е. их голоса имеют различный тембр.

Скорость распространения звуковых волн в газах вычисляется по формуле

где R — молярная газовая постоянная, М — молярная масса, =СрV — отношение молярных теплоемкостей газа при постоянных давлении и объеме, Т —термодинамическая температура. Из формулы вытекает, что скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при T=273 К скорость звука в воздухе (M=2910–3 кг/моль) v=331 м/с, в водороде (M=210–3 кг/моль) v=1260 м/с.

Инфразвук (ИЗ) — колебания частотой ниже 20 Гц. Подавляющее число современных людей не слышат акустические колебания частотой ниже 40 Гц. Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100–110 дБ.

Допустимыми уровнями звукового давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31.5 Гц. Инфразвук может вселить в человека такие чувства как тоска, панический страх, ощущение холода, беспокойство, дрожь в позвоночнике. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Попадая в резонанс с биоритмами человека, инфразвук особо высокой интенсивности может вызвать мгновенную смерть.

При совпадении частот внутренних органов и инфразвука, соответствующие органы начинают вибрировать, что может сопровождаться сильнейшими болевыми ощущениями. При воздействии на человека инфразвука с частотами, близкими к 6 Гц, могут отличаться друг от друга картины, создаваемые левым и правым глазом, начнет «ломаться» горизонт, возникнут проблемы с ориентацией в пространстве, придут необъяснимая тревога, страх. Подобные ощущения вызывают и пульсации света на частотах 4–8 Гц. Инфразвук может действовать не только на зрение, но и на психику, а также шевелить волоски на коже, создавая ощущение холода

УЛЬТРАЗВУК (УЗ) — упругие волны с частотой колебаний от 20 кГц до 1 ГГц, не слышимые человеческим ухом. Ультразвуковые волны по своей природе не отличаются от упругих волн слышимого диапазона. Распространение УЗ подчиняется основным законам, общим для акустических волн любого диапазона частот. Вместе с тем высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только УЗ. Вследствие большой частоты (малой длины волны) ультразвук обладает особыми свойствами. Так, подобно свету, ультразвуковые волны могут образовывать строго направленные пучки. Отражение и преломление этих пучков на границе двух сред подчиняется законам геометрической оптики. Он сильно поглощается газами и слабо - жидкостями., отражается от границ раздела твердых и жидких сред с газами.

Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей. В практике для получения ультразвука обычно применяют электромеханические генераторы ультразвука, действие которых основано на способности некоторых материалов изменять свои размеры под действием магнитного (магнитострикционные генераторы) или электрического поля (пьезоэлектрические генераторы), при этом генераторы издают звуки высокой частоты.
В жидкости под воздействием ультразвука образуются пустоты в виде мельчайших пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют протекание процессов диффузии (взаимопроникновения двух сред друг в друга). Ультразвуковые волны существенно влияют на растворимость вещества и в целом на ход химических реакций. Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское использование. Ультразвук применяют в медицине и биологии для диагностики, для выявления и лечения опухолей и некоторых дефектов в тканях организма.

У. широко применяется в технике. По данным измерений с и a во многих техн. задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава разл. жидкостей и т. п.). Используя отражение У. на границе разл. сред, с помощью УЗ-приборов измеряют размеры изделий (напр., УЗ-тол-щиномеры), определяют уровни жидкостей в ёмкостях, недоступных для прямого измерения. У. сравнительно малой интенсивности (~0,1 Вт/см2) применяется в дефектоскопии для неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т. д.). При помощи У. осуществляется звукови-дение: преобразуя УЗ-колебания в электрические, а последние в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. Для получения увеличенных изображений предмета с помощью У. высокой частоты создан акустич. микроскоп, аналогичный обычному микроскопу, преимущества к-рого перед оптическим - высокая контрастность и возможность получать изображения оптически непрозрачных объектов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: