| Задание 1. Выполнить действия над матрицами: | (А – В)(2 А + Е), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны точки A(1;0;0), B(0;0;2), C(1;0;1), O(0;0;0). Найти угол между векторами
и
.
Задание 5. Вычислить площадь треугольника, вершины которого находятся в точках А(-1;0;-1), В(0;2;-3), С(4;4;1). Найти высоту 
Задание 6. Показать, что точки А(2;-1;-2), В(1;2;1), С(2;3;0), D(5;0;-6) лежат в одной плоскости.
Задание 7. Даны две точки Р(2;3) и Q(–1;0). Составить уравнение прямой, проходящей через точку Q перпендикулярно отрезку PQ.
Задание 8. Написать уравнение плоскости, проходящей через прямые
и
.
Задание 9. Написать уравнение окружности, диаметром которой служит отрезок прямой х + у = 6, отсеченный гиперболой ху = 8.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) б) |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А – В) А +2 Е, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Найти длину вектора
, зная, что
и
взаимны перпендикулярные орты.
Задание 5. Построить параллелограмм на векторах
вычислить его площадь и одну из его высот.
Задание 6. В тетраэдре с вершинами в точках А(1;1;1), В(2;0;2), С(2;2;2), D(3;4;-3) вычислить высоту
, опущенную на плоскость треугольника АВС.
Задание 7. Составить уравнение прямой, если точка Р(2;3) служит основанием перпендикуляра, опущенного из начала координат на эту прямую.
Задание 8. Найти проекцию точки М 1(3;1;–1) на плоскость
.
Задание 9. Определить, как расположена прямая 2х–у–3=0 относительно эллипса
.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) б) |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (2 А – В) А + В, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Векторы
и
образуют угол
, причем
,
. Определить
.
Задание 5. Вычислить площадь параллелограмма, построенного на векторах
и
если 
Задание 6. Вычислить объем пирамиды с вершинами в точках О(0;0;0), А(5;2;0), В(2;5;0), С(1;2;4).
Задание 7. Составить уравнение прямой, параллельной двум данным прямым 2 х + 3 у – 6 = 0 и 4 х + 6 у + 17 = 0, проходящей посередине между ними.
Задание 8. Написать уравнение перпендикуляра к плоскости
, проходящего через точку пересечения этой плоскости с прямой
.
Задание 9. Составить уравнение окружности, касающейся двух параллельных прямых
2 х + у – 5 = 0, 2 х + у + 15 = 0 и проходящей через точку А (2;1).
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
.
Задание 3. Найти пределы: а)
б)
в) 
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) | |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . | |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А – В) А + 3 В, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны векторы
,
. Определить 
Задание 5. Векторы
и
составляют угол 450. Найти площадь треугольника, построенного на векторах
если 
Задание 6. Показать, что векторы
компланарны.
Задание 7. Составить уравнение прямой, проходящей через точку Р(3;5) и на одинаковых расстояниях от точек А(–7;3) и В(11;–15).
Задание 8. Составить уравнение плоскости, проходящее через точку М 0 (1;–1;–1), перпендикулярно к прямой
.
Задание 9. Привести уравнение кривой к каноническому виду и построить ее:
х 2 + 4 х + 4 у – 2 = 0.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | 2 А + (А + Е) В, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны вершины четырехугольника A(1;-2;2), B(1;4;0), C(-4;1;1), D(-5;-5;3). Доказать, что его диагонали
и
взаимно перпендикулярны
Задание 5. Векторы
и
взаимно перпендикулярны. Зная, что
вычислить 
Задание 6. Вектор
перпендикулярен к векторам
угол между которыми равен
Зная, что
вычислить 
Задание 7. Найти проекцию точки Р(–8;12) на прямую, проходящую через точки А(2;–3) и В(–5;1).
Задание 8. На оси Оz найти точку, расстояние которой от плоскости
равно 2.
Задание 9. Установить тип кривой, ее характеристики: центр, вершины, фокусы, эксцентриситет, уравнения директрис: 4х2+3у2–8х+12у–32=0. Построить кривую.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | 3(А – В) – 2 АВ, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны три вектора
,
,
. Вычислить 
Задание 5. Векторы
и
образуют угол
Зная, что
вычислить 
Задание 6. Установить, компланарны ли векторы

Задание 7. Найти точку М1, симметричную точке М2(8;–9) относительно прямой, проходящей через точки А(3;–4) и В(–1;–2).
Задание 8. Составить уравнение плоскости, проходящей через точку М (1;–2;1) перпендикулярно прямой
.
Задание 9. Определить точки гиперболы
, расстояние которых до правого фокуса равно 4,5.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
, n =12.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) . |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (2 А – Е) А + 2 АВ, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны вершины треугольника A(1;-2;4), B(-4;-2;0), C(3;-2;1). Определить внутренний угол при вершине B.
Задание 5. Даны вершины треугольника А(1;-1;2), В(5;-6;2), С(1;3;-1). Вычислить длину его высоты, опущенной из вершины В на сторону АС.
Задание 6. Доказать, что четыре точки А(1;2;-1), В(0;1;5), С(-1;2;1), D(2;1;3) лежат в одной плоскости.
Задание 7. Вычислить площадь треугольника, отсекаемого прямой 3 х – 4 у – 12 = 0 от координатного угла.
Задание 8. Вычислить объем пирамиды ограниченной плоскостью
и координатными плоскостями и найти расстояние от начала координат до данной плоскости.
Задание 9. Написать уравнение окружности, проходящей через точку М(1;2) и касающейся осей координат.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
, n = 12.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | А (А – Е) – (А + В) В, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Вычислив внутренние углы треугольника с вершинами A(1;2;1), B(3;-1;7), C(7;4;-2), доказать, что этот треугольник равнобедренный.
Задание 5. Вычислить синус угла, образованного векторами 
Задание 6. Вычислить объем тетраэдра, вершины которого находятся в точках А(2;-1;1), В(5;5;4), С(3;2;-1), D(4;1;3).
Задание 7. Составить уравнение прямой, которая проходит через точку М1(3;–7) и отсекает на координатных осях отрезки одинаковой величины, отличные от нуля.
Задание 8. Доказать, что прямые
и
взаимно перпендикулярны.
Задание 9. Привести уравнение к каноническому виду, найти координаты центра, вершин, фокусов, эксцентриситет, уравнения директрис: 5х2+9у2–30х+18у+9=0. Построить кривую.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
:
, n = 14.
Задание 3. Найти пределы: а)
б) 
в)
; г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А + В) – В (2 А + Е), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Векторы
и
образуют угол
. Зная, что вектор
,
, вычислить угол между векторами
и
.
Задание 5. Векторы
и
взаимно перпендикулярны. Зная, что
вычислить 
Задание 6. Даны три вершины А(3;-4;7), В(-5;3;-2), С(1;2;-3) параллелограмма АВСD. Найти его четвертую вершину D, противоположную В.
Задание 7. Составить уравнение прямой, которая проходит через точку Р(2;3) и отсекает на координатных осях отрезки равной длины, отличные от нуля.
Задание 8. Составить уравнение плоскости, проходящей через точку А (0;2;1) и параллельной векторам
и
.
Задание 9. Привести уравнение к каноническому виду, найти координаты центра, вершин, фокусов, эксцентриситет, уравнения директрис и асимптот: 6 х 2 – 9 у 2 – 64 х – 54 у – 161 = 0. Построить кривую.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = 3 + 3 i, n = 16.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | А (2 Е + В) – В (А – Е), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Даны две точки M(-5;7;-6), N(7;-9;9). Вычислить проекцию вектора
на ось, совпадающую с направлением вектора
.
Задание 5. Вычислить площадь параллелограмма, построенного на векторах
и
, если известны его диагонали 
Задание 6. Даны вершины тетраэдра А(2;3;1), В(4;1;-2), С(6;3;7), D(-5;-4;8). Найти длину его высоты, опущенной из вершины D.
Задание 7. Составить уравнение прямой, которая проходит через точку С(8;6) и отсекает от координатного угла треугольник площадью 12 кв.ед.
Задание 8. Найти расстояние от точки М (2;–1;3) до прямой
.
Задание 9. Написать уравнение параболы, если известны фокус F (4;3) и уравнение директрисы у + 1 = 0.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = 3 – 3 i, n = 8.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | 3(А + В)(В – Е), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Векторы
и
образуют угол
. Зная, что
,
, вычислить
.
Задание 5. Даны векторы
Вычислить площадь треугольника, построенного на этих векторах.
Задание 6. Известны точки А(-1;0;-1), В(1;0;0), С(-2;3;1), D(-1;-2;0). Доказать, что треугольник АВС прямоугольный, а точка D не лежит в плоскости треугольника ABC.
Задание 7. В треугольнике с вершинами А(–2;0), В(2;6) и С(4;2) проведена высота ВD. Написать уравнение этой высоты.
Задание 8. Составить уравнение плоскости, проходящей через точку А (2;–1;3) и отсекающей на осях координат равные отрезки и написать уравнение перпендикуляра к этой плоскости, проходящего через точку А.
Задание 9. Найти угол между радиусами окружности х 2 + у 2 – 4 х + 6 у – 5 = 0, проведенными в точках пересечения ее с осью Ох.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = 3 + 3 i, n = 10.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А + В)(2 Е – А), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему реше- ний: | | ||
Задание 4. Даны точки A(3;3;-2), B(0;-3;4), C(0;-3;0), D(0;2;-4). Найти 
Задание 5. Задан треугольник с вершинами А(1;-2;8), В(0;0;4), С(6;2;0). Вычислить его площадь
и высоту 
Задание 6. Вычислить объем тетраэдра ОАВС, если 
Задание 7. Написать уравнение прямой, проходящей через точку пересечения прямых
2 х –3 у –1 = 0 и 3 х + у – 7 = 0 перпендикулярно к прямой у = 2 х + 5.
Задание 8. Две грани куба лежат на плоскостях
,
.
Вычислить объем этого куба.
Задание 9. Найти расстояние от центра окружности х 2 + у 2 + 2 у =0 до прямой
у = 2 (2 – х).
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = 1 + i, n=10.
Задание 3. Найти пределы: а)
; б)
;
в)
; г)
; д)
.
| Задание 4. Найти производные следующих функций: | а) ; б) . |
| Задание 5. Используя формулу логарифмического диф- ференцирования, найти производные следующих функций: | а) ; б) . |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | А – (Е + 2 В) В, где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему реше- ний: | | ||
Задание 4. Вектор
перпендикулярен векторам
и
и удовлетворяет усло- вию
. Найти координаты вектора
.
Задание 5. Даны векторы
Вычислить модуль вектора
и площадь треугольника, построенного на векторах
и
.
Задание 6. Вычислить объем тетраэдра с вершинами в точках А(2;-3;5), В(0;2;1), С(-2;-2;-3), D(3;2;4).
Задание 7. Даны уравнения двух сторон прямоугольника 2х–3у+5=0, 3х + 2у – 7 =0 и одна из его вершин А (2;–3). Составить уравнения двух сторон этого прямоугольника.
Задание 8. Показать, что прямая
лежит в плоскости
.
Задание 9. Определить, как расположена прямая 2х–у–3=0 относительно окружности х2+у2–3х+2у–3=0.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = 1 – i, n = 10.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического диф ференцирования, найти производные следующих функций: | а) б) |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А – В)(А + В), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Доказать, что четырехугольник с вершинами A(–3; 5; 6), B(1; –5; 7), C(8; –3; –3), D(4; 7; –2) является квадратом.
Задание 5. Вычислить диагонали и площадь параллелограмма, построенного на векторах 
Задание 6. Доказать, что векторы
компланарны.
Задание 7. Даны уравнения двух сторон прямоугольника х – 2у = 0, х–2у+15=0 и уравнение одной из его диагоналей 7х+у–15=0. Найти вершины прямоугольника.
Задание 8. Написать уравнение плоскости, проходящей через прямую
и точку М 0 (3;4;0).
Задание 9. Привести уравнение к каноническому виду и построить кривую х2+4х–5у+19=0.
Контрольная работа №2
Задание 1. Даны комплексные числа
и
. Найти:
а)
б)
в)
г)
д) 
Задание 2. Применяя формулу Муавра, найти
: Z = –1 + i, n = 14.
Задание 3. Найти пределы: а)
б) 
в)
г)
д) 
| Задание 4. Найти производные следующих функций: | а) б) |
| Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: | а) б) |
Контрольная работа №1
| Задание 1. Выполнить действия над матрицами: | (А – В)(А + 2 В), где , | ||
| Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. | | ||
| Задание 3. Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: | | ||
Задание 4. Найти угол между диагоналями параллелограмма, построенного на векторах
,
б)
б)
,
б)
б)
,
б)
; б)
.
,
б)
; б)
.
,
б)
; б)
.
,
б)
.
; б)
.
,
б)
; б)
.
,
б)
; б)
.
,
б)
; б)
.
,
б)
; б)
.
,
б)
; б)
.
,
; б)
.
; б)
.
,
б)
б)
,
б)
б)
,